Bounded Max-colorings of Graphs

  • Evripidis Bampis
  • Alexander Kononov
  • Giorgio Lucarelli
  • Ioannis Milis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6506)


In a bounded max-coloring of a vertex/edge weighted graph, each color class is of cardinality at most b and of weight equal to the weight of the heaviest vertex/edge in this class. The bounded max-vertex/edge-coloring problems ask for such a coloring minimizing the sum of all color classes’ weights. These problems generalize the well known max-coloring problems by taking into account the number of available resources (colors) in practical applications. In this paper we present complexity results and approximation algorithms for the bounded max-coloring problems on general graphs, bipartite graphs and trees.


Bipartite Graph General Graph Algorithm Scheme Batch Schedule Discrete Apply Mathematic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N.: A note on the decomposition of graphs into isomorphic matchings. Acta Mathematica Hungarica 42, 221–223 (1983)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baker, B.S., Coffman Jr., E.G.: Mutual exclusion scheduling. Theoretical Computer Science 162, 225–243 (1996)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bodlaender, H.L., Jansen, K.: Restrictions of graph partition problems. Part I. Theoretical Computer Science 148, 93–109 (1995)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bongiovanni, G., Coppersmith, D., Wong, C.K.: An optimum time slot assignment algorithm for an SS/TDMA system with variable number of transponders. IEEE Trans. on Communications 29, 721–726 (1981)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boudhar, M., Finke, G.: Scheduling on a batch machine with job compatibilities. Belgian Journal of Oper. Res., Statistics and Computer Science 40, 69–80 (2000)MathSciNetMATHGoogle Scholar
  6. 6.
    Bourgeois, N., Lucarelli, G., Milis, I., Paschos, V.T.: Approximating the max-edge-coloring problem. Theoretical Computer Science 411, 3055–3067 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chvátal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4, 233–235 (1979)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    de Werra, D., Demange, M., Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring on planar, bipartite and split graphs: Complexity and approximation. Discrete Applied Mathematics 157, 819–832 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    de Werra, D., Hertz, A., Kobler, D., Mahadev, N.V.R.: Feasible edge coloring of trees with cardinality constraints. Discrete Mathematics 222, 61–72 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Demange, M., de Werra, D., Monnot, J., Paschos, V.T.: Time slot scheduling of compatible jobs. Journal of Scheduling 10, 111–127 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dror, M., Finke, G., Gravier, S., Kubiak, W.: On the complexity of a restricted list-coloring problem. Discrete Mathematics 195, 103–109 (1999)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Epstein, L., Levin, A.: On the max coloring problem. In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 142–155. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring: Further complexity and approximability results. Information Processing Letters 97, 98–103 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gardi, F.: Mutual exclusion scheduling with interval graphs or related classes. Part II. Discrete Applied Mathematics 156, 794–812 (2008)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gravier, S., Kobler, D., Kubiak, W.: Complexity of list coloring problems with a fixed total number of colors. Discrete Applied Mathematics 117, 65–79 (2002)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Holyer, I.: The NP-completeness of edge-coloring. SIAM Journal on Computing 10, 718–720 (1981)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jarvis, M., Zhou, B.: Bounded vertex coloring of trees. Discrete Mathematics 232, 145–151 (2001)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kavitha, T., Mestre, J.: Max-coloring paths: Tight bounds and extensions. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 87–96. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Kesselman, A., Kogan, K.: Nonpreemptive scheduling of optical switches. IEEE Trans. on Communications 55, 1212–1219 (2007)CrossRefGoogle Scholar
  20. 20.
    Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1064–1075. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Pemmaraju, S.V., Raman, R., Varadarajan, K.R.: Buffer minimization using max-coloring. In: SODA 2004, pp. 562–571 (2004)Google Scholar
  22. 22.
    Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: STOC 2006, pp. 681–690 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Evripidis Bampis
    • 1
  • Alexander Kononov
    • 2
  • Giorgio Lucarelli
    • 3
  • Ioannis Milis
    • 4
  1. 1.LIP6Université Pierre et Marie CurieFrance
  2. 2.Sobolev Institute of MathematicsNovosibirskRussia
  3. 3.LAMSADEUniversité Paris-Dauphine and CNRS FRE 3234France
  4. 4.Dept. of InformaticsAthens University of Economics and BusinessGreece

Personalised recommendations