Analysis of an Iterated Local Search Algorithm for Vertex Coloring

  • Dirk Sudholt
  • Christine Zarges
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6506)


Hybridizations of evolutionary algorithms and local search are among the best-performing algorithms for vertex coloring. However, the theoretical knowledge about these algorithms is very limited and it is agreed that a solid theoretical foundation is needed. We consider an iterated local search algorithm that iteratively tries to improve a coloring by applying mutation followed by local search. We investigate the capabilities and the limitations of this approach using bounds on the expected number of iterations until an optimal or near-optimal coloring is found. This is done for two different mutation operators and for different graph classes: bipartite graphs, sparse random graphs, and planar graphs.


Local Search Bipartite Graph Planar Graph Mutation Operator Chromatic Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wegener, I.: Complexity Theory—Exploring the Limits of Efficient Algorithms. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  2. 2.
    Khot, S.: Improved inapproximability results for MaxClique, chromatic number and approximate graph coloring. In: Proc. of FOCS 2001, pp. 600–609. IEEE, Los Alamitos (2001)Google Scholar
  3. 3.
    Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Computers and Operations Research 33(9), 2547–2562 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Wegener, I.: Towards a theory of randomized search heuristics. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 125–141. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    De Jong, K.: Evolutionary Computation—a unified approach. MIT Press, Cambridge (2006)zbMATHGoogle Scholar
  6. 6.
    Culberson, J.C., Luo, F.: Exploring the k-colorable landscape with iterated greedy. DIMACS Series, vol. 26, pp. 245–284. AMS, Providence (1995)zbMATHGoogle Scholar
  7. 7.
    Paquete, L., Stützle, T.: An experimental investigation of iterated local search for coloring graphs. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 122–131. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Chiarandini, M., Stützle, T.: An application of iterated local search to graph coloring. In: Proc. of the Computational Symposium on Graph Coloring and its Generalizations, pp. 112–125 (2002)Google Scholar
  9. 9.
    Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization 3(4), 379–397 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In: Handbook of Metaheuristics, pp. 321–353. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  11. 11.
    Oliveto, P.S., He, J., Yao, X.: Time complexity of evolutionary algorithms for combinatorial optimization: A decade of results. Int’l Journal of Automation and Computing 4(3), 281–293 (2007)CrossRefGoogle Scholar
  12. 12.
    Sudholt, D.: Local search in evolutionary algorithms: the impact of the local search frequency. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 359–368. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Sudholt, D.: The impact of parametrization in memetic evolutionary algorithms. Theoretical Computer Science 410(26), 2511–2528 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sudholt, D.: Hybridizing evolutionary algorithms with variable-depth search to overcome local optima. Algorithmica (to appear, 2010)Google Scholar
  15. 15.
    Jensen, T.R., Toft, B.: Graph coloring problems. Wiley Interscience, Hoboken (1995)zbMATHGoogle Scholar
  16. 16.
    Brockhoff, D.: Randomisierte Suchheuristiken für das Graphfärbungsproblem. Master’s thesis, Universität Dortmund (2005)Google Scholar
  17. 17.
    Fischer, S., Wegener, I.: The one-dimensional Ising model: Mutation versus recombination. Theoretical Computer Science 344(2-3), 208–225 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sudholt, D.: Crossover is provably essential for the Ising model on trees. In: Proc. of GECCO 2005, pp. 1161–1167. ACM Press, New York (2005)Google Scholar
  19. 19.
    Ghosh, S., Karaata, M.H.: A self-stabilizing algorithm for coloring planar graphs. Distributed Computing 7(1), 55–59 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kosowski, A., Kuszner, Ł.: Self-stabilizing algorithms for graph coloring with improved performance guarantees. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1150–1159. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Linear time self-stabilizing colorings. Information Processing Letters 87(5), 251–255 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Barenboim, L., Elkin, M.: Distributed (δ + 1)-coloring in linear (in δ) time. In: Proc. of STOC 2009, pp. 111–120. ACM Press, New York (2009)Google Scholar
  23. 23.
    Zaker, M.: Inequalities for the Grundy chromatic number of graphs. Discrete Applied Mathematics 155(18), 2567–2572 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Balogh, J., Hartke, S., Liu, Q., Yu, G.: On the first-fit chromatic number of graphs. SIAM Journal of Discrete Mathematics 22, 887–900 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  26. 26.
    Witt, C.: Greedy local search and vertex cover in sparse random graphs. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 410–419. Springer, Heidelberg (2009)Google Scholar
  27. 27.
    Witt, C.: Personal communicationGoogle Scholar
  28. 28.
    Diestel, R.: Graph Theory. Springer, Heidelberg (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dirk Sudholt
    • 1
    • 2
  • Christine Zarges
    • 3
  1. 1.International Computer Science InstituteBerkeleyUSA
  2. 2.Cercia, University of BirminghamBirminghamUK
  3. 3.Technische Universität DortmundDortmundGermany

Personalised recommendations