Faster Algorithms for Feedback Arc Set Tournament, Kemeny Rank Aggregation and Betweenness Tournament

  • Marek Karpinski
  • Warren Schudy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6506)

Abstract

We study fixed parameter algorithms for three problems: Kemeny rank aggregation, feedback arc set tournament, and betweenness tournament. For Kemeny rank aggregation we give an algorithm with runtime \(O^*(2^{O(\sqrt{OPT})})\), where n is the number of candidates, \(OPT \le \binom{n}{2}\) is the cost of the optimal ranking, and O*(·) hides polynomial factors. This is a dramatic improvement on the previously best known runtime of O*(2O(OPT)). For feedback arc set tournament we give an algorithm with runtime \(O^*(2^{O(\sqrt{OPT})})\), an improvement on the previously best known \(O^*(OPT^{O(\sqrt{OPT})})\) [4]. For betweenness tournament we give an algorithm with runtime \(O^*(2^{O(\sqrt{OPT/n})})\), where n is the number of vertices and \(OPT \le \binom{n}{3}\) is the optimal cost. This improves on the previously known \(O^*(OPT^{O(OPT^{1/3})})\) [28], especially when OPT is small. Unusually we can solve instances with OPT as large as n (logn)2 in polynomial time!

Keywords

Kemeny rank aggregation Feedback arc set tournament Fixed parameter tractability Betweenness tournament 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ailon, N., Alon, N.: Hardness of fully dense problems. Inf. Comput. 205(8), 1117–1129 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Ranking and clustering. Journal of the ACM 55(5), Article No. 23 (2008)Google Scholar
  3. 3.
    Alon, N.: Ranking tournaments. SIAM J. Discrete Math. 20(1), 137–142 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 49–58. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Bartholdi III, J., Tovey, C., Trick, M.: Voting schemes for which it can be difficult to tell who won the election. Social Choice and Welfare 6, 157–165 (1989)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bessy, S., Fomin, F.V., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé, S.: Kernels for feedback arc set in tournaments. In: FSTTCS 2009: 29th Foundations of Software Technology and Theoretical Computer Science (2009)Google Scholar
  7. 7.
    Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-parameter algorithms for Kemeny scores. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 60–71. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: How similarity helps to efficiently compute Kemeny rankings. In: AAMAS 2009: 8th International Conference on Autonomous Agents and Multiagent Systems, pp. 657–664 (2009); Journal version in Theoretical Computer Science 410, 4554–4570 (2009)Google Scholar
  9. 9.
    Braverman, M., Mossel, E.: Noisy sorting without resampling. In: Procs. 19th ACM-SIAM SODA, pp. 268–276 (2008)Google Scholar
  10. 10.
    Bredereck, R.: Fixed-parameter algorithms for computing Kemeny scores—theory and practice. Technical report, Studienarbeit, Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany (2009) arXiv:1001.4003v1Google Scholar
  11. 11.
    Charbit, P., Thomasse, S., Yeo, A.: The minimum feedback arc set problem is NP-hard for tournaments. Combinatorics, Probability and Computing 16, 1–4 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Charikar, M., Guruswami, V., Manokaran, R.: Every Permutation CSP of Arity 3 is Approximation Resistant. In: 24th IEEE CCC (2009)Google Scholar
  13. 13.
    Chor, B., Sudan, M.: A geometric approach to betweenness. SIAM J. Discrete Math. 11(4), 511–523 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. J. Artificial Intelligence Research 10, 243–270 (1999)MathSciNetMATHGoogle Scholar
  15. 15.
    Conitzer, V.: Computing Slater rankings using similarities among candidates. In: Procs. 21st AAAI, pp. 613–619 (2006)Google Scholar
  16. 16.
    Coppersmith, D., Fleischer, L., Rudra, A.: Ordering by weighted number of wins gives a good ranking for weighted tournaments. In: Procs. 17th ACM-SIAM SODA, pp. 776–782 (2006)Google Scholar
  17. 17.
    Dom, M., Guo, J., Hüffner, F., Niedermeier, R., Truß, A.: Fixed-Parameter Tractability Results for Feedback Set Problems in Tournaments. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 320–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggegation methods for the web. In: Procs. 10th WWW, pp. 613–622 (2001), The NP-hardness proof is in the online-only appendix available from http://www10.org/cdrom/papers/577/
  19. 19.
    Feige, U.: Faster fast (feedback arc set in tournaments), arXiv:0911.5094 (2009)Google Scholar
  20. 20.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)MATHGoogle Scholar
  21. 21.
    Impagliazzo, R., Paturi, R.: Which problems have strongly exponential complexity? J. Computer and System Sciences 63, 512–530 (2001)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Karp, R.: Reducibility among combinatorial problems. In: Procs. Complexity of Computer Computations, pp. 85–103 (1972)Google Scholar
  23. 23.
    Karpinski, M., Schudy, W.: Approximation schemes for the betweenness problem in tournaments and related ranking problems. arXiv:0911.2214 (2009)Google Scholar
  24. 24.
    Kemeny, J.: Mathematics without numbers. Daedalus 88, 571–591 (1959)Google Scholar
  25. 25.
    Kemeny, J., Snell, J.: Mathematical models in the social sciences. Blaisdell, New York (1962); Reprinted by MIT press, Cambridge (1972)Google Scholar
  26. 26.
    Mathieu, C., Schudy, W.: How to Rank with Few Errors. In: 39th ACM STOC, pp. 95–103 (2009), In Submission, http://www.cs.brown.edu/~ws/papers/fast_journal.pdf
  27. 27.
    Opatrny, J.: Total ordering problems. SIAM J. Comput. 8(1), 111–114 (1979)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Saurabh, S.: Chromatic coding and universal (hyper-) graph coloring families. In: Parameterized Complexity News, pp. 3–4 (June 2009), http://mrfellows.net/Newsletters/2009June_FPT_News.pdf
  29. 29.
    Slater, P.: Inconsistencies in a schedule of paired comparisons. Biometrika 48, 303–312 (1961)CrossRefGoogle Scholar
  30. 30.
    Young, P.: Optimal voting rules. The Journal of Economic Perspectives 9(1), 51–64 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marek Karpinski
    • 1
  • Warren Schudy
    • 2
  1. 1.University of BonnGermany
  2. 2.IBM T.J. WatsonUSA

Personalised recommendations