Interpretation of Stream Programs: Characterizing Type 2 Polynomial Time Complexity

  • Hugo Férée
  • Emmanuel Hainry
  • Mathieu Hoyrup
  • Romain Péchoux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6506)

Abstract

We study polynomial time complexity of type 2 functionals. For that purpose, we introduce a first order functional stream language. We give criteria, named well-founded, on such programs relying on second order interpretation that characterize two variants of type 2 polynomial complexity including the Basic Feasible Functions (BFF). These characterizations provide a new insight on the complexity of stream programs. Finally, we adapt these results to functions over the reals, a particular case of type 2 functions, and we provide a characterization of polynomial time complexity in Recursive Analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amadio, R.M.: Synthesis of max-plus quasi-interpretations. Fundamenta Informaticae 65(1), 29–60 (2005)MathSciNetMATHGoogle Scholar
  2. 2.
    Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the polytime functions. Computational complexity 2(2), 97–110 (1992)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bonfante, G., Marion, J.Y., Moyen, J.Y.: Quasi-interpretations. Theor. Comput. Sci. (to appear)Google Scholar
  4. 4.
    Cobham, A.: The Intrinsic Computational Difficulty of Functions. In: Logic, methodology and philosophy of science III, p. 24. North-Holland Pub. Co., Amsterdam (1965)Google Scholar
  5. 5.
    Constable, R.L.: Type two computational complexity. In: Proc. 5th annual ACM STOC, pp. 108–121 (1973)Google Scholar
  6. 6.
    Endrullis, J., Grabmayer, C., Hendriks, D., Isihara, A., Klop, J.W.: Productivity of stream definitions. Theor. Comput. Sci. 411(4-5), 765–782 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gaboardi, M., Péchoux, R.: Upper Bounds on Stream I/O Using Semantic Interpretations. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 271–286. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Irwin, R.J., Royer, J.S., Kapron, B.M.: On characterizations of the basic feasible functionals (Part I). J. Funct. Program. 11(1), 117–153 (2001)CrossRefMATHGoogle Scholar
  9. 9.
    Kapron, B.M., Cook, S.A.: A new characterization of type-2 feasibility. SIAM Journal on Computing 25(1), 117–132 (1996)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ko, K.I.: Complexity theory of real functions. Birkhauser Boston Inc., Cambridge (1991)CrossRefMATHGoogle Scholar
  11. 11.
    Lankford, D.: On proving term rewriting systems are noetherien. Tech. Rep. (1979)Google Scholar
  12. 12.
    Leivant, D., Marion, J.Y.: Lambda calculus characterizations of poly-time. In: Typed Lambda Calculi and Applications, pp. 274–288 (1993)Google Scholar
  13. 13.
    Manna, Z., Ness, S.: On the termination of Markov algorithms. In: Third Hawaii International Conference on System Science, pp. 789–792 (1970)Google Scholar
  14. 14.
    Mehlhorn, K.: Polynomial and abstract subrecursive classes. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, pp. 96–109. ACM, New York (1974)CrossRefGoogle Scholar
  15. 15.
    Ramyaa, R., Leivant, D.: Feasible functions over co-inductive data. In: WoLLIC, pp. 191–203 (2010)Google Scholar
  16. 16.
    Seth, A.: Turing machine characterizations of feasible functionals of all finite types. In: Feasible Mathematics II, pp. 407–428 (1995)Google Scholar
  17. 17.
    Weihrauch, K.: Computable analysis: an introduction. Springer, Heidelberg (2000)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hugo Férée
    • 1
  • Emmanuel Hainry
    • 2
    • 5
  • Mathieu Hoyrup
    • 3
    • 5
  • Romain Péchoux
    • 4
    • 5
  1. 1.ENS LyonLyon cedex 07France
  2. 2.Université Henri Poincaré, Nancy-UniversitéFrance
  3. 3.INRIA Nancy - Grand Est, Villers-lès-NancyFrance
  4. 4.Université Nancy 2, Nancy-UniversitéFrance
  5. 5.LORIAVandœuvre-lès-Nancy cedexFrance

Personalised recommendations