Computing Sparse Multiples of Polynomials

  • Mark Giesbrecht
  • Daniel S. Roche
  • Hrushikesh Tilak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6506)


We consider the problem of finding a sparse multiple of a polynomial. Given f ∈ F[x] of degree d, and a desired sparsity t, our goal is to determine if there exists a multiple h ∈ F[x] of f such that h has at most t non-zero terms, and if so, to find such an h. When F=ℚ and t is constant, we give a polynomial-time algorithm in d and the size of coefficients in h. When F is a finite field, we show that the problem is at least as hard as determining the multiplicative order of elements in an extension field of F (a problem thought to have complexity similar to that of factoring integers), and this lower bound is tight when t = 2.


Linear Code Irreducible Polynomial Irreducible Factor Integer Lattice Rational Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adleman, L.M., McCurley, K.S.: Open problems in number-theoretic complexity. II. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 291–322. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  2. El Aimani, L., von zur Gathen, J.: Finding low weight polynomial multiples using lattices. Cryptology ePrint Archive, Report 2007/423 (2007),
  3. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Symp. Theory of Computing (STOC 2001), pp. 601–610 (2001)Google Scholar
  4. Aumasson, J.-P., Finiasz, M., Meier, W., Vaudenay, S.: TCHo: a hardware-oriented trapdoor cipher. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 184–199. Springer, Heidelberg (2007)Google Scholar
  5. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.: On the inherent intractability of certain coding problems. IEEE Transactions on Information Theory 24(3) (1978)Google Scholar
  6. Brent, R.P., Zimmermann, P.: Algorithms for finding almost irreducible and almost primitive trinomials. In: Primes and Misdemeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams, Fields Institute, p. 212 (2003)Google Scholar
  7. Didier, F., Laigle-Chapuy, Y.: Finding low-weight polynomial multiples using discrete logarithms. In: Proc. IEEE International Symposium on Information Theory (ISIT 2007), pp. 1036–1040 (2007)Google Scholar
  8. Egner, S., Minkwitz, T.: Sparsification of rectangular matrices. J. Symb. Comput. 26(2), 135–149 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Emiris, I.Z., Kotsireas, I.S.: Implicitization exploiting sparseness. In: Geometric and Algorithmic Aspects of Computer-Aided Design and Manufacturing. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 67, pp. 281–297 (2005)Google Scholar
  10. von zur Gathen, J., Shparlinski, I.: Constructing elements of large order in finite fields. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 1999. LNCS, vol. 1719, pp. 730–730. Springer, Heidelberg (1999)Google Scholar
  11. Guruswami, V., Vardy, A.: Maximum-likelihood decoding of Reed-Solomon codes is NP-hard. In: SODA 2005: Proceedings of the Sixteenth Annual ACM-SIAM symposium on Discrete Algorithms, pp. 470–478 (2005)Google Scholar
  12. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Lenstra Jr., H.W.: Finding small degree factors of lacunary polynomials. In: Number Theory in Progress, vol. 1, pp. 267–276. De Gruyter, Berlin (1999)Google Scholar
  14. Meijer, A.R.: Groups, factoring, and cryptography. Math. Mag. 69(2), 103–109 (1996)MathSciNetzbMATHGoogle Scholar
  15. Risman, L.J.: On the order and degree of solutions to pure equations. Proc. Amer. Math. Soc. 55(2), 261–266 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6, 64–94 (1962)MathSciNetzbMATHGoogle Scholar
  17. Sadjadpour, H.R., Sloane, N.J.A., Salehi, M., Nebe, G.: Interleaver design for turbo codes. IEEE J. Selected Areas in Communications 19(5), 831–837 (2001)CrossRefGoogle Scholar
  18. Vardy, A.: The intractability of computing the minimum distance of a code. IEEE Transactions on Information Theory 43(6), 1757–1766 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mark Giesbrecht
    • 1
  • Daniel S. Roche
    • 1
  • Hrushikesh Tilak
    • 1
  1. 1.Cheriton School of Computer ScienceUniversity of WaterlooCanada

Personalised recommendations