Computing Sparse Multiples of Polynomials

  • Mark Giesbrecht
  • Daniel S. Roche
  • Hrushikesh Tilak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6506)


We consider the problem of finding a sparse multiple of a polynomial. Given f ∈ F[x] of degree d, and a desired sparsity t, our goal is to determine if there exists a multiple h ∈ F[x] of f such that h has at most t non-zero terms, and if so, to find such an h. When F=ℚ and t is constant, we give a polynomial-time algorithm in d and the size of coefficients in h. When F is a finite field, we show that the problem is at least as hard as determining the multiplicative order of elements in an extension field of F (a problem thought to have complexity similar to that of factoring integers), and this lower bound is tight when t = 2.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adleman, L.M., McCurley, K.S.: Open problems in number-theoretic complexity. II. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 291–322. Springer, Heidelberg (1994)Google Scholar
  2. El Aimani, L., von zur Gathen, J.: Finding low weight polynomial multiples using lattices. Cryptology ePrint Archive, Report 2007/423 (2007),
  3. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Symp. Theory of Computing (STOC 2001), pp. 601–610 (2001)Google Scholar
  4. Aumasson, J.-P., Finiasz, M., Meier, W., Vaudenay, S.: TCHo: a hardware-oriented trapdoor cipher. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 184–199. Springer, Heidelberg (2007)Google Scholar
  5. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.: On the inherent intractability of certain coding problems. IEEE Transactions on Information Theory 24(3) (1978)Google Scholar
  6. Brent, R.P., Zimmermann, P.: Algorithms for finding almost irreducible and almost primitive trinomials. In: Primes and Misdemeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams, Fields Institute, p. 212 (2003)Google Scholar
  7. Didier, F., Laigle-Chapuy, Y.: Finding low-weight polynomial multiples using discrete logarithms. In: Proc. IEEE International Symposium on Information Theory (ISIT 2007), pp. 1036–1040 (2007)Google Scholar
  8. Egner, S., Minkwitz, T.: Sparsification of rectangular matrices. J. Symb. Comput. 26(2), 135–149 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. Emiris, I.Z., Kotsireas, I.S.: Implicitization exploiting sparseness. In: Geometric and Algorithmic Aspects of Computer-Aided Design and Manufacturing. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 67, pp. 281–297 (2005)Google Scholar
  10. von zur Gathen, J., Shparlinski, I.: Constructing elements of large order in finite fields. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 1999. LNCS, vol. 1719, pp. 730–730. Springer, Heidelberg (1999)Google Scholar
  11. Guruswami, V., Vardy, A.: Maximum-likelihood decoding of Reed-Solomon codes is NP-hard. In: SODA 2005: Proceedings of the Sixteenth Annual ACM-SIAM symposium on Discrete Algorithms, pp. 470–478 (2005)Google Scholar
  12. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)MATHCrossRefMathSciNetGoogle Scholar
  13. Lenstra Jr., H.W.: Finding small degree factors of lacunary polynomials. In: Number Theory in Progress, vol. 1, pp. 267–276. De Gruyter, Berlin (1999)Google Scholar
  14. Meijer, A.R.: Groups, factoring, and cryptography. Math. Mag. 69(2), 103–109 (1996)MATHMathSciNetGoogle Scholar
  15. Risman, L.J.: On the order and degree of solutions to pure equations. Proc. Amer. Math. Soc. 55(2), 261–266 (1976)MATHCrossRefMathSciNetGoogle Scholar
  16. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6, 64–94 (1962)MATHMathSciNetGoogle Scholar
  17. Sadjadpour, H.R., Sloane, N.J.A., Salehi, M., Nebe, G.: Interleaver design for turbo codes. IEEE J. Selected Areas in Communications 19(5), 831–837 (2001)CrossRefGoogle Scholar
  18. Vardy, A.: The intractability of computing the minimum distance of a code. IEEE Transactions on Information Theory 43(6), 1757–1766 (1997)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mark Giesbrecht
    • 1
  • Daniel S. Roche
    • 1
  • Hrushikesh Tilak
    • 1
  1. 1.Cheriton School of Computer ScienceUniversity of WaterlooCanada

Personalised recommendations