The Evolution of Conceptual Modeling pp 180-204

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6520) | Cite as

Conceptual Modeling Approaches for Dynamic Web Service Composition

  • Georg Grossmann
  • Rajesh Thiagarajan
  • Michael Schrefl
  • Markus Stumptner

Abstract

Service composition is a recent field that has seen a flurry of different approaches proposed towards the goal of flexible distributed heterogeneous interoperation of software systems. Usually they are based on the expectation that such systems must be derived from higher level models rather than be coded at low level. We survey the state-of-the-art of techniques for conceptual modeling of Web service composition from a broad, multi-field perspective that captures approaches from classical structure-oriented models over workflow languages to planning-based approaches. We describe how the related fields of model-driven development, conceptual modeling of business processes and workflows, semantic process descriptions through ontology, and service matching through constraint satisfaction can be utilized in a complementary way to support dynamic (i.e., runtime), instance-based selection and composition of Web services. Further we present an overview and a comparison of existing approaches for dynamic service composition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acuna, C.J., Marcos, E.: Modeling Semantic Web Services: A Case Study. In: Proc. ICWE, pp. 32–39. ACM Press, New York (2006)CrossRefGoogle Scholar
  2. 2.
    Aggarwal, R., Verma, K., Miller, J.A., Milnor, W.: Constraint Driven Web Service Composition in METEOR-S. In: Proc. IEEE Int’l Conference on Service Computing (SCC), Shanghai, China, pp. 23–30 (September 2004)Google Scholar
  3. 3.
    Albert, P., Henocque, L., Kleiner, M.: Configuration Based Workflow Composition. In: Proc. of the IEEE International Conference on Web Services (ICWS), Orlando, Florida, USA, pp. 285–292 (July 2005)Google Scholar
  4. 4.
    Albert, P., Henocque, L., Kleiner, M.: An end-to-end configuration-based framework for automatic sws composition. In: Proceedings of the 20th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), Dayton, Ohio, USA, pp. 351–358 (November 2008)Google Scholar
  5. 5.
    Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services – Concepts, Architecturse and Applications. Springer, Heidelberg (2003)MATHGoogle Scholar
  6. 6.
    Balzer, S., Liebig, T., Wagner, M.: Pitfalls of OWL-S – A practical Semantic Web Use Case. In: Proc. ICSOC, pp. 289–298 (2004)Google Scholar
  7. 7.
    Barros, A., Dumas, M., ter Hofstede, A.H.M.: Service Interaction Patterns. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 302–318. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Beauche, S., Poizat, P.: Automated service composition with adaptive planning. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 530–537. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Bertoli, P., Pistore, M., Traverso, P.: Automated composition of Web services via planning in asynchronous domains. Artificial Intelligence 174(3-4), 316–361 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Born, M., Hoffmann, J., Kaczmarek, T., Kowalkiewicz, M., Markovic, I., Scicluna, J., Weber, I., Zhou, X.: Semantic Annotation and Composition of Business Processes with Maestro. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 772–776. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Breitman, K.K., Casanova, M.A., Truszkowski, W.: Semantic Web – Concepts, Technologies and Applications. In: NASA Monographs in Systems and Software Engineering. Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Dhyani, D., Ng, W.K., Bhowmick, S.S.: A survey of web metrics. ACM Comput. Surv. 34(4), 469–503 (2002)CrossRefGoogle Scholar
  13. 13.
    Dietze, S., Benn, N., Domingue, J., Conconi, A., Cattaneo, F.: Two-Fold Service Matchmaking - Applying Ontology Mapping for Semantic Web Service Discovery. In: ASWC, Shanghai, China, pp. 246–260 (December 2009)Google Scholar
  14. 14.
    Dustdar, S., Hoffmann, T.: Interaction pattern detection in process oriented information systems. DKE 62, 138–155 (2007)CrossRefGoogle Scholar
  15. 15.
    Dustdar, S., Schreiner, W.: A survey on web services composition. IJWGS 1(1), 1–30 (2005)CrossRefGoogle Scholar
  16. 16.
    Elgedawy, I., Tari, Z., Thom, J.A.: Correctness-aware high-level functional matching approaches for semantic Web services. TWEB 2(2) (2008)Google Scholar
  17. 17.
    Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M., Zanker, M.: Transforming UML Domain Descriptions into Configuration Knowledge Bases. In: Knowledge Transformation for the Semantic Web, pp. 154–168. IOS Press, Amsterdam (2003)Google Scholar
  18. 18.
    Gómez-Pérez, A., González-Cabero, R., Lama, M.: ODE SWS: A Framework for Designing and Composing Semantic Web Services. IEEE Intelligent Systems 19(4), 24–31 (2004)CrossRefGoogle Scholar
  19. 19.
    Grimm, S., Motik, B., Preist, C.: Matching Semantic Service Descriptions with Local Closed-World Reasoning. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 575–589. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Grønmo, R., Jaeger, M.C.: Model-Driven Semantic Web Service Composition. In: Proc. APSEC, pp. 79–86. IEEE Press, Los Alamitos (2005)Google Scholar
  21. 21.
    Hamers, L., et al.: Similarity measures in scientometric research: The Jaccard index versus Salton’s cosine formula. Inf. Process. Manage. 25(3), 315–318 (1989)CrossRefGoogle Scholar
  22. 22.
    Ben Hassine, A., Matsubara, S., Ishida, T.: A Constraint-Based Approach to Horizontal Web Service Composition. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 130–143. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Hoffmann, J., Weber, I., Scicluna, J., Kaczmarek, T., Ankolekar, A.: Combining scalability and expressivity in the automatic composition of semantic web services. In: ICWE, pp. 98–107 (2008)Google Scholar
  24. 24.
    Kashyap, V., Bussler, C., Moran, M.: The Semantic Web – Semantics for Data and Services on the Web. Springer, Heidelberg (2008)MATHGoogle Scholar
  25. 25.
    Kawamura, T., De Blasio, J.-A., Hasegawa, T., Paolucci, M., Sycara, K.: Public Deployment of Semantic Service Matchmaker with UDDI Business Registry. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 752–766. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Kil, H., Nam, W., Lee, D.: Efficient Abstraction and Refinement for Behavioral Description Based Web Service Composition. In: Proceedings of the International Joint Conference on Artificial Intelligence, Pasadena, California, USA, pp. 1740–1745 (July 2009)Google Scholar
  27. 27.
    Kuropka, D., Tröger, P., Staab, S., Weske, M. (eds.): Semantic Service Provisioning. CAT-SWS-1. Springer, Heidelberg (2008)Google Scholar
  28. 28.
    Lécué, F., Léger, A.: Semantic Web Service Composition Based on a Closed World Assumption. In: Proc. ECOWS, pp. 233–242. IEEE Press, Los Alamitos (2006)Google Scholar
  29. 29.
    Li, L., Horrocks, I.: A Software Framework for Matchmaking Based on Semantic Web Technology. In: Proc. of WWW Conference, pp. 331–339. ACM Press, New York (2003)Google Scholar
  30. 30.
    Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)CrossRefMATHGoogle Scholar
  31. 31.
    Marconi, A., Pistore, M.: Synthesis and composition of web services. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 89–157. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    Marconi, A., Pistore, M., Traverso, P.: Automated Composition of Web Services: the ASTRO Approach. IEEE Data Eng. Bull. 31(3), 23–26 (2008)Google Scholar
  33. 33.
    Mayer, W., Thiagarajan, R., Stumptner, M.: Service Composition As Generative Constraint Satisfaction. In: Proc. ICWS (2009)Google Scholar
  34. 34.
    McIlraith, S., Son, T.C.: Adapting Golog for the Composition of Semantic Web Services. In: Proc. KR, pp. 482–493 (2002)Google Scholar
  35. 35.
    Moser, S., Martens, A., Häbich, M., Mülle, J.: A Hybrid Approach for Generating Compatible WS-BPEL Partner Processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 458–464. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  36. 36.
    Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-automated adaptation of service interactions. In: Proc.of WWW Conference, pp. 993–1002. ACM Press, New York (2007)Google Scholar
  37. 37.
    Noy, N.F.: Semantic Integration: A Survey Of Ontology-Based Approaches. ACM SIGMOD Record 33(4) (2004)Google Scholar
  38. 38.
    Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Importing the Semantic Web in UDDI. In: Bussler, C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J. (eds.) CAiSE 2002 and WES 2002. LNCS, vol. 2512, pp. 225–236. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  39. 39.
    Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing: State of the Art and Research Challenges. IEEE Computer 40(11), 38–45 (2007)CrossRefGoogle Scholar
  40. 40.
    Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  41. 41.
    Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier, C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied Ontology 1(1), 77–106 (2005)Google Scholar
  42. 42.
    Sabou, M., Richards, D., van Splunter, S.: An experience report on using DAML-S. In: Proc. of WWW Workshop on E-Services and the Semantic Web (ESSW) (2003)Google Scholar
  43. 43.
    Sirbu, A., Hoffmann, J.: Towards Scalable Web Service Composition with Partial Matches. In: Proc. of the IEEE International Conference on Web Services (ICWS), pp. 29–36 (2008)Google Scholar
  44. 44.
    Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN Planning for Web Service Composition Using SHOP2. Journal of Web Semantics 1(4), 377–396 (2004)CrossRefGoogle Scholar
  45. 45.
    Song, X., Dou, W., Song, W.: Workflow Framework for Intelligent Service Composition. In: Workshop Proceedings at the Grid and Pervasive Computing Conference, Geneva, Switzerland (May 2009)Google Scholar
  46. 46.
    Srivastava, B., Koehler, J.: Web service composition - current solutions and open problems. In: ICAPS 2003 Workshop on Planning for Web Services (2003)Google Scholar
  47. 47.
    Stollberg, M., Haller, A.: Semantic Web Services Tutorial. In: ICWS (2005)Google Scholar
  48. 48.
    Thiagarajan, R., Stumptner, M.: A Native Ontology Approach for Semantic Service Description. In: Proc. of the Australasian Ontology Workshop (AOW). CRPIT Series, vol. 72, pp. 85–90. ACS (2006)Google Scholar
  49. 49.
    Trainotti, M., et al.: ASTRO: Supporting composition and execution of web services. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 495–501. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  50. 50.
    van Rijsbergen, C.J.: Information Retrieval, Butterworth (1979)Google Scholar
  51. 51.
    Vitvar, T., Kopecký, J., Viskova, J., Fensel, D.: WSMO-lite annotations for web services. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 674–689. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  52. 52.
    Wang, H., Li, Z., Yang, B., Xia, H.: A Context-Aware Service Matchmaking Method Using Description Logic. In: Proc. IEEE Asia-Pacific Service Computing Conference (APSCC), Tsukuba Science City, Japan, pp. 26–32 (December 2007)Google Scholar
  53. 53.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer, Heidelberg (2007)Google Scholar
  54. 54.
    Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.S.: Automating DAML-S web services composition using SHOP2. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 195–210. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  55. 55.
    Yu, B., Zhang, C., Zhao, Y.: Transform from Models to Service Description Based on MDA. In: Proc IEEE APSCC, pp. 605–608. IEEE Press, Los Alamitos (2006)Google Scholar
  56. 56.
    Zhao, H., Doshi, P.: A hierarchical framework for logical composition of web services. Service Oriented Computing and Applications 3(4), 285–306 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Georg Grossmann
    • 1
  • Rajesh Thiagarajan
    • 1
  • Michael Schrefl
    • 1
  • Markus Stumptner
    • 1
  1. 1.School of Computer and Information ScienceUniversity of South AustraliaAdelaideAustralia

Personalised recommendations