Partial Kernelization for Rank Aggregation: Theory and Experiments

  • Nadja Betzler
  • Robert Bredereck
  • Rolf Niedermeier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6478)

Abstract

Rank Aggregation is important in many areas ranging from web search over databases to bioinformatics. The underlying decision problem Kemeny Score is NP-complete even in case of four input rankings to be aggregated into a “median ranking”. We study efficient polynomial-time data reduction rules that allow us to find optimal median rankings. On the theoretical side, we improve a result for a “partial problem kernel” from quadratic to linear size. On the practical side, we provide encouraging experimental results with data based on web search and sport competitions, e.g., computing optimal median rankings for real-world instances with more than 100 candidates within milliseconds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. Journal of the ACM 55(5), Article 23 (2008)Google Scholar
  2. 2.
    Bartholdi III, J., Tovey, C.A., Trick, M.A.: Voting schemes for which it can be difficult to tell who won the election. Social Choice and Welfare 6, 157–165 (1989)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-parameter algorithms for Kemeny rankings. Theoretical Computer Science 410(45), 4554–4570 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Betzler, N., Guo, J., Komusiewicz, C., Niedermeier, R.: Average parameterization and partial kernelization for computing medians. Journal of Computer and System Sciences (2010), doi:10.1016/j.jcss.2010.07.005Google Scholar
  5. 5.
    Conitzer, V., Davenport, A., Kalagnanam, J.: Improved bounds for computing Kemeny rankings. In: Proc. of 21st AAAI, pp. 620–626. AAAI Press, Menlo Park (2006)Google Scholar
  6. 6.
    Davenport, A., Kalagnanam, J.: A computational study of the Kemeny rule for preference aggregation. In: Proc. of 19th AAAI, pp. 697–702. AAAI Press, Menlo Park (2004)Google Scholar
  7. 7.
    Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the Web. In: Proc. of 10th WWW, pp. 613–622 (2001)Google Scholar
  8. 8.
    Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity search and classification via rank aggregation. In: Proc. of 22nd ACM SIGMOD, pp. 301–312. ACM, New York (2003)Google Scholar
  9. 9.
    Jackson, B.N., Schnable, P.S., Aluru, S.: Consensus genetic maps as median orders from inconsistent sources. IEEE/ACM Transactions on Computational Biology and Bioinformatics 5(2), 161–171 (2008)CrossRefGoogle Scholar
  10. 10.
    Karpinski, M., Schudy, W.: Approximation schemes for the betweenness problem in tournaments and related ranking problems. In: Proc. of 21st ISAAC (to appear, 2010)Google Scholar
  11. 11.
    Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: Proc. of 39th STOC, pp. 95–103. ACM, New York (2007)Google Scholar
  12. 12.
    Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed values. Journal of Computer and System Sciences 75, 137–153 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefMATHGoogle Scholar
  14. 14.
    Raman, V., Saurabh, S.: Improved fixed parameter tractable algorithms for two “edge” problems: MAXCUT and MAXDAG. Information Processing Letters 104(2), 65–72 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Schalekamp, F., van Zuylen, A.: Rank aggregation: Together we’re strong. In: Proc. of 11th ALENEX, pp. 38–51. SIAM, Philadelphia (2009)Google Scholar
  16. 16.
    Simjour, N.: Improved parameterized algorithms for the Kemeny aggregation problem. In: Proc. of 4th IWPEC. LNCS, vol. 5917, pp. 312–323. Springer, Heidelberg (2009)Google Scholar
  17. 17.
    van Zuylen, A., Williamson, D.P.: Deterministic pivoting algorithms for constrained ranking and clustering problems. Mathematics of Operations Research 34, 594–620 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Young, H., Levenglick, A.: A consistent extension of Condorcet’s election principle. SIAM Journal on Applied Mathematics 35(2), 285–300 (1978)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nadja Betzler
    • 1
  • Robert Bredereck
    • 1
  • Rolf Niedermeier
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations