Bounded Length, 2-Edge Augmentation of Geometric Planar Graphs

  • Evangelos Kranakis
  • Danny Krizanc
  • Oscar Morales Ponce
  • Ladislav Stacho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6508)


Algorithms for the construction of spanning planar subgraphs of Unit Disk Graphs (UDGs) do not ensure connectivity of the resulting graph under single edge deletion. To overcome this deficiency, in this paper we address the problem of augmenting the edge set of planar geometric graphs with straight line edges of bounded length so that the resulting graph is planar and 2-edge connected. We give bounds on the number of newly added straight-line edges and show that such edges can be of length at most 3 times the max length of the edges of the original graph; also 3 is shown to be optimal. It is shown to be NP-hard to augment a geometric planar graph to a 2-edge connected geometric planar with the minimum number of new edges of a given bounded length. Further, we prove that there is no local algorithm for augmenting a planar UDG into a 2-edge connected planar graph with straight line edges.

keywords and Phrases

Augmentation Deletion 2-edge connected Geometric Local Minimum number of edges Planar UDG 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abellanas, M., García, A., Hurtado, F., Tejel, J., Urrutia, J.: Augmenting the connectivity of geometric graphs. Comp. Geom. Theory Appl. 40(3), 220–230 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cheriyan, J., Sebö, A., Szigeti, Z.: An Improved Approximation Algorithm for Minimum Size 2-Edge Connected Spanning Subgraphs. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 126–136. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Dong, Q., Bejerano, Y.: Building Robust Nomadic Wireless Mesh Networks Using Directional Antennas. In: IEEE INFOCOM 2008, The 27th Conference on Computer Communications, pp. 1624–1632 (2008)Google Scholar
  4. 4.
    Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5, 653–665 (1976)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Jackson, B., Jordán, T.: Independence free graphs and vertex connectivity augmentation. J. Comb. Theory Ser. B 94(1), 31–77 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Jothi, R., Raghavachari, B., Varadarajan, S.: A 5/4-Approximation Algorithm for Minimum 2-Edge-Connectivity. In: SODA 2003: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 725–734. Society for Industrial and Applied Mathematics, Philadelphia (2003)Google Scholar
  7. 7.
    Kant, G.: Augmenting outerplanar graphs. J. Algorithms 21(1), 1–25 (1996)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kant, G., Bodlaender, H.: Planar graph augmentation problems. In: Workshop on Algorithms and Data Structures, pp. 286–298 (1991)Google Scholar
  9. 9.
    Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: Proc. 11th Canadian Conference on Computational Geometry (1999)Google Scholar
  10. 10.
    Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Industrial and Applied Mathematics, Philadelphia (2000)CrossRefMATHGoogle Scholar
  11. 11.
    Rutter, I., Wolff, A.: Augmenting the connectivity of planar and geometric graphs. Electronic Notes in Discrete Mathematics 31, 53–56 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Vempala, S., Vetta, A.: Factor 4/3 Approximations for Minimum 2-Connected Subgraphs. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 262–273. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. J. Comput. Syst. Sci. 35(1), 96–144 (1987)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Evangelos Kranakis
    • 1
  • Danny Krizanc
    • 2
  • Oscar Morales Ponce
    • 1
  • Ladislav Stacho
    • 3
  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada
  2. 2.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA
  3. 3.Department of MathematicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations