Advertisement

Chosen-Ciphertext Secure Identity-Based Encryption from Computational Bilinear Diffie-Hellman

  • David Galindo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6487)

Abstract

We extend a technique by Hanaoka and Kurosawa that provides efficient chosen-ciphertext secure public key encryption based on the Computational Diffie-Hellman assumption to the identity-based encryption setting. Our main result is an efficient chosen-ciphertext secure identity-based encryption scheme with constant-size ciphertexts under the Computational Bilinear Diffie-Hellman assumption in the standard model.

Keywords

standard model identity-based encryption computational bilinear Diffie-Hellman assumption hardcore bits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bentahar, K., Farshim, P., Malone-Lee, J., Smart, N.P.: Generic Constructions of Identity-Based and Certificateless KEMs. J. Cryptology 21(2), 178–199 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity Based Encryption Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Franklin, M.K.: Identity-Based Encryption From The Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Applications. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  6. 6.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal of Computing 33(1), 167–226 (2004)CrossRefMathSciNetGoogle Scholar
  7. 7.
    El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)Google Scholar
  8. 8.
    Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics 156(16), 3113–3121 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hanaoka, G., Kurosawa, K.: Efficient Chosen Ciphertext Secure Public Key Encryption under the Computational Diffie-Hellman Assumption. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and Efficient Public-Key Encryption from Computational Diffie-Hellman in the Standard Model. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 1–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)Google Scholar
  12. 12.
    Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David Galindo
    • 1
  1. 1.University of LuxembourgLuxembourg

Personalised recommendations