Constructing Certificateless Encryption and ID-Based Encryption from ID-Based Key Agreement

  • Dario Fiore
  • Rosario Gennaro
  • Nigel P. Smart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6487)

Abstract

We discuss the relationship between ID-based key agreement protocols, certificateless encryption and ID-based key encapsulation mechanisms. In particular we show how in some sense ID-based key agreement is a primitive from which all others can be derived. In doing so we focus on distinctions between what we term pure ID-based schemes and non-pure schemes, in various security models. We present security models for ID-based key agreement which do not ”look natural” when considered as analogues of normal key agreement schemes, but which look more natural when considered in terms of the models used in certificateless encryption. Our work highlights distinctions between the two approaches to certificateless encryption, and adds to the debate about what is the ”correct” security model for certificateless encryption.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Al-Riyami, S.S.: Cryptographic schemes based on elliptic curve pairings. Ph.D. Thesis, University of London (2004)Google Scholar
  3. 3.
    Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Al-Riyami, S.S., Paterson, K.G.: CBE from CL-PKE: A generic construction and efficient schemes. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 398–415. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Baek, J., Safavi-Naini, R., Susilo, W.: Certificateless public key encryption without pairing. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 134–148. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1993)Google Scholar
  7. 7.
    Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their security analysis. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 30–45. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Bentahar, K., Farshim, P., Malone-Lee, J., Smart, N.P.: Generic constructions of identity-based and certificateless KEMs. J. Cryptology 21, 178–199 (2008); Full version at IACR e-print 2005/058MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable Zero-Knowledge. Weizmann Science Press, Israel (1999)Google Scholar
  10. 10.
    Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Chen, L., Cheng, Z., Smart, N.P.: Identity-based key agreement protocols from pairings. Int. J. Inf. Security 6, 213–241 (2007)CrossRefGoogle Scholar
  12. 12.
    Chen, L., Kudla, C.: Identity based authenticated key agreement from pairings. In: IEEE Computer Security Foundations Workshop, pp. 219–233 (2003); The modified version of this paper is available at Cryptology ePrint Archive, Report 2002/184Google Scholar
  13. 13.
    Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining indistinguishabilit-based proof models for key establishment protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 585–604. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Dent, A.: A Survey of Certificateless Encryption Schemes and Security Models. International Journal of Information Security 7, 347–377 (2008)CrossRefGoogle Scholar
  15. 15.
    Fiore, D., Gennaro, R.: Making the Diffie–Hellman protocol identity-based. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 165–178. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    McCullagh, N., Barreto, P.S.L.M.: A new two-party identity-based authenticated key agreement. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 262–274. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Paterson, K., Srinivasan, S.: On the relations between non-interactive key distribution, identity based-based encryption and trapdoor discrete log groups. Designs, Codes and Cryptography 52, 219–241 (2009)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Scott, M.: Authenticated ID-based key exchange and remote log-in with insecure token and PIN number. Cryptology ePrint Archive, Report 2002/164Google Scholar
  19. 19.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  20. 20.
    Smart, N.P.: An identity based authenticated key agreement protocol based on the Weil pairing. Electronics Letters 38, 630–632 (2002)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dario Fiore
    • 1
  • Rosario Gennaro
    • 2
  • Nigel P. Smart
    • 3
  1. 1.École Normale Supérieure, CNRS - INRIAParisFrance
  2. 2.IBM T.J. Watson Research CenterHawthorneNew YorkU.S.A.
  3. 3.Dept. Computer ScienceUniversity of BristolBristolUnited Kingdom

Personalised recommendations