Advertisement

Reconfiguring Chain-Type Modular Robots Based on the Carpenter’s Rule Theorem

  • Jungwon Seo
  • Steven Gray
  • Vijay Kumar
  • Mark Yim
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 68)

Abstract

Reconfiguring chain-type modular robots has been considered a difficult problem scaling poorly with increasing numbers of modules. We address the reconfiguration problem for robots in 2D by presenting centralized and decentralized algorithms based on the Carpenter’s Rule Theorem [4]. The theorem guarantees the existence of instantaneous collision-free unfolding motions which monotonically increase the distance between all joint pairs until an open chain is straightened or a closed chain is convexified. The motions can be found by solving a convex program. Compared to the centralized version, the decentralized algorithm utilizes local proximity sensing and limited communications between subsets of nearby modules. Because the decentralized version reduces the number of joint pairs considered in each convex optimization, it is a practical solution for large number of modules.

Keywords

Joint Angle Integral Curve Master Problem Convex Program Open Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boyd, S., Xiao, L., Mutapcic, A., Mattingley, J.: Notes on decomposition methods (2007)Google Scholar
  2. 2.
    Casal, A.: Reconfiguration planning for modular self-reconfigurable robots. Ph.D. thesis, Stanford University (2002)Google Scholar
  3. 3.
    Connelly, R.: Expansive motions (2006)Google Scholar
  4. 4.
    Connelly, R., Demaine, E., Rote, G.: Straightening polygonal arcs and convexifying polygonal cycles. In: Annual IEEE Symposium on Foundations of Computer Science, vol. 0, p. 432 (2000), http://doi.ieeecomputersociety.org/10.1109/SFCS.2000.892131
  5. 5.
    Connelly, R., Demaine, E.D., Demaine, M.L., Fekete, S.P., Langerman, S., Mitchell, J.S.B., Ribó, A., Rote, G.: Locked and unlocked chains of planar shapes. In: SCG 2006: Proceedings of the twenty-second annual symposium on Computational geometry, pp. 61–70. ACM, New York (2006), http://doi.acm.org/10.1145/1137856.1137868 CrossRefGoogle Scholar
  6. 6.
    Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht (1988)Google Scholar
  7. 7.
    Goldstein, S.C., Campbell, J.D., Mowry, T.C.: Programmable matter. Computer 38(6), 99 (2005), http://dx.doi.org/10.1109/MC.2005.198 CrossRefGoogle Scholar
  8. 8.
    Gray, S., Seo, J., White, P., Zeichner, N., Yim, M., Kumar, V.: A toolchain for the design and simulation of foldable programmable matter. In: Proceedings of the ASME International Design Technical Conferences and Computer and Information in Engineering Conference (2010)Google Scholar
  9. 9.
    Griffith, S.: Growing machines. Ph.D. thesis, Massachusetts Institute of Technology (2004)Google Scholar
  10. 10.
    Hawkes, E., An, B., Benbernou, N.M., Tanaka, H., Kim, S., Demaine, E.D., Rus, D., Wood, R.J.: Programmable matter by folding. In: Proceedings of the National Academy of Sciences (2010), doi: 10.1073/pnas.0914069107Google Scholar
  11. 11.
    Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell (1991)Google Scholar
  12. 12.
    Nguyen, A., Guibas, L., Yim, M.: Controlled module density helps reconfiguration planning. In: Algorithmic and Computational Robotics: New Directions: The Fourth Workshop on the Algorithmic Foundations (WAFR). AK Peters, Ltd. (2001)Google Scholar
  13. 13.
    Rus, D., Vona, M.: Self-reconfiguration planning with compressible unit modules. In: Proceedings of IEEE/RSJ IEEE International Conference on Robotics and Automation, Detroit, vol. 4, pp. 2513–2520 (1999)Google Scholar
  14. 14.
    Sastry, S.: Nonlinear Systems: Analysis, Stability, and Control. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  15. 15.
    Shen, W., Will, P.: Docking in self-reconfigurable robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 1049–1054 (2001), doi:10.1109/IROS.2001.976307Google Scholar
  16. 16.
    Tang, X., Thomas, S., Amato, N.: Planning with reachable distances: Fast enforcement of closure constraints. In: IEEE International Conference on Robotics and Automation, pp. 2694–2699 (2007), doi:10.1109/ROBOT.2007.363872Google Scholar
  17. 17.
    Walter, J., Welch, J., Amato, N.: Distributed reconfiguration of metamorphic robot chains. Distributed Computing 17(2), 171–189 (2004)CrossRefGoogle Scholar
  18. 18.
    White, P.J., Kopanski, K., Lipson, H.: Stochastic self-reconfigurable cellular robotics. In: Proceedings of IEEE/RSJ International Conference on Robotics and Automation, New Orleans, LA, USA, vol. 3, pp. 2888–2893 (2004)Google Scholar
  19. 19.
    White, P.J., Posner, M.L., Yim, M.: Strength analysis of miniature folded right angle tetrahedron chain programmable matter. In: Proceedings of IEEE/RSJ International Conference on Robotics and Automation (2010)Google Scholar
  20. 20.
    Yakey, J., LaValle, S.M., Kavraki, L.E.: Randomized path planning for linkages with closed kinematics chains. IEEE Transactions on Robotics and Automation 17(6), 951–959 (2001)CrossRefGoogle Scholar
  21. 21.
    Yim, M., Duff, D.G., Roufas, K.D.: Polybot: a modular reconfigurable robot. In: Proceedings of IEEE/RSJ IEEE International Conference on Robotics and Automation, vol. 1, p. 514 (2000), http://dx.doi.org/10.1109/ROBOT.2000.844106
  22. 22.
    Yim, M., White, P.J., Park, M., Sastra, J.: Modular self-reconfigurable robots. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 5618–5631. Springer, Heidelberg (2009)Google Scholar
  23. 23.
    Yim, M., Zhang, Y., Lamping, J., Mao, E.: Distributed control for 3d metamorphosis. Autonomous Robots 10(1), 41 (2001), http://dx.doi.org/10.1023/A:1026544419097 zbMATHCrossRefGoogle Scholar
  24. 24.
    Zakin, M.: ProgrammableMatter-The Next Revolution in Materials. Military Technology 32(5), 98 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jungwon Seo
    • 1
  • Steven Gray
    • 1
  • Vijay Kumar
    • 1
  • Mark Yim
    • 1
  1. 1.Department of Mechanical Engineering and Applied MechanicsUniversity of Pennsylvania 

Personalised recommendations