Algorithmic Foundations of Robotics IX pp 337-353

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 68)

Path Planning on Manifolds Using Randomized Higher-Dimensional Continuation

  • Josep M. Porta
  • Léonard Jaillet


Despite the significant advances in path planning methods, problems involving highly constrained spaces are still challenging. In particular, in many situations the configuration space is a non-parametrizable variety implicitly defined by constraints, which complicates the successful generalization of sampling-based path planners. In this paper, we present a new path planning algorithm specially tailored for highly constrained systems. It builds on recently developed tools for Higher-dimensional Continuation, which provide numerical procedures to describe an implicitly defined variety using a set of local charts. We propose to extend these methods to obtain an efficient path planner on varieties, handling highly constrained problems. The advantage of this planner comes from that it directly operates into the configuration space and not into the higher-dimensional ambient space, as most of the existing methods do.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ballantyne, G., Moll, F.: The da Vinci telerobotic surgical system: Virtual operative field and telepresence surgery. Surgical Clinics of North America 83(6), 1293–1304 (2003)CrossRefGoogle Scholar
  2. 2.
    Berenson, D., Srinivasa, S.S., Ferguson, D., Kuffner, J.J.: Manipulation planning on constraint manifolds. In: IEEE International Conference on Robotics and Automation, pp. 1383–1390 (2009)Google Scholar
  3. 3.
    van den Bergen, G.: Efficient collision detection of complex deformable models using AABB trees. Journal of Graphics Tools 2(4), 1–13 (1997)MATHGoogle Scholar
  4. 4.
    Beyn, W.J., Champneys, A., Doedel, E., Govarets, W., Kuznetsov, U.A., Yu, A., Sandstede, B.: Numerical Continuation, and Computation of Normal Forms. In: Handbook of Dynamical Systems, vol. 2, pp. 149–219. Elsevier, Amsterdam (2002)CrossRefGoogle Scholar
  5. 5.
    Brown, W.M., Martin, S., Pollock, S.N., Coutsias, E.A., Watson, J.P.: Algorithmic dimensionality reduction for molecular structure analysis. Journal of Chemical Physics 129(6), 64, 064,118 (2008)CrossRefGoogle Scholar
  6. 6.
    Canny, J.: The Complexity of Robot Motion Planing. MIT Press, Cambridge (1988)Google Scholar
  7. 7.
    Chen, P.C., Hansen, P., Jaumard, B.: On-line and off-line vertex enumeration by adjacency lists. Operation Research Letters 10, 403–409 (1991)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cortés, J., Siméon, T., Laumond, J.P.: A random loop generator for planning the motions of closed kinematic chains using PRM methods. In: IEEE International Conference on Robotics and Automation, pp. 2141–2146 (2002)Google Scholar
  9. 9.
    Dalibard, S., Nakhaei, A., Lamiraux, F., Laumond, J.P.: Whole-body task planning for a humanoid robot: a way to integrate collision avoidance. In: IEEE-RAS International Conference on Humanoid Robots, pp. 355–360 (2009)Google Scholar
  10. 10.
    Fishman, G.F.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, Heidelberg (1996)MATHGoogle Scholar
  11. 11.
    Gharbi, M., Cortés, J., Siméon, T.: A sampling-based path planner for dual-arm manipulation. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 383–388 (2008)Google Scholar
  12. 12.
    Han, L., Amato, N.M.: A kinematics-based probabilistic roadmap method for closed chain systems. In: Algorithmic and Computational Robotics - New Directions (WAFR 2000), pp. 233–246 (2000)Google Scholar
  13. 13.
    Han, L., Rudolph, L.: Inverse kinematics for a serial chain with joints under distance constraints. In: Robotics: Science and Systems, pp. 177–184 (2005)Google Scholar
  14. 14.
    Havoutis, I., Ramamoorthy, S.: Motion synthesis through randomized exploration of submanifolds of configuration spaces. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS(LNAI), vol. 5949, pp. 92–103. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Henderson, M.E.: Multiple parameter continuation: Computing implicitly defined k-manifolds. International Journal of Bifurcation and Chaos 12(3), 451–476 (2002)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Henderson, M.E.: Multiparameter parallel search branch switching. International Journal of Bifurcation and Chaos in Applied Science and Engineering 15(3), 967–974 (2005)MATHCrossRefGoogle Scholar
  17. 17.
    Henderson, M.E.: Higher-Dimensional Continuation. In: Numerical continuation methods for dynamical systems: path following and boundary value problems. Springer, Heidelberg (2007)Google Scholar
  18. 18.
    Jaillet, L., Cortés, J., Siméon, T.: Sampling-based path planning on configuration-space costmaps. IEEE Transactions on Robotics 26(4), 635–646 (2010)CrossRefGoogle Scholar
  19. 19.
    Krauskopf, B., Osinga, H.M., Galán-Vioque, J.: Numerical continuation methods for dynamical systems: path following and boundary value problems. Springer, Heidelberg (2007)MATHGoogle Scholar
  20. 20.
    Ott, C., Eiberger, O., Friedl, W., Bauml, B., Hillenbrand, U., Borst, C., Albu-Schafer, A., Brunner, B., Hirschmuller, H., Hirzinger, G.: A humanoid two-arm system for dexterous manipulation. In: IEEE-RAS International Conference on Humanoid Robots, pp. 276–283 (2006)Google Scholar
  21. 21.
    Porta, J.M., Ros, L., Thomas, F.: A linear relaxation technique for the position analysis of multiloop linkages. IEEE Transactions on Robotics 25(2), 225–239 (2009)CrossRefGoogle Scholar
  22. 22.
    Pressley, A.: Elementary Differential Geometry. Springer, Heidelberg (2001)MATHGoogle Scholar
  23. 23.
    Rheinboldt, W.C.: MANPACK: A set of algorithms of computations on implicitly defined manifolds. Computers and Mathematics with Applications 32(12), 15–28 (1996)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Rodríguez, A., Basañez, L., Celaya, E.: A relational positioning methodology for robot task specification and execution. IEEE Transactions on Robotics 24(3), 600–611 (2008)CrossRefGoogle Scholar
  25. 25.
    Rosales, C., Ros, L., Porta, J.M., Suárez, R.: Synthesizing grasp configurations with specified contact regions. International Journal of Robotics Research (2010)Google Scholar
  26. 26.
    Roth, B., Freudenstein, F.: Synthesis of path-generating mechanisms by numerical methods. ASME Journal of Engineering for Industry 85, 298–307 (1963)Google Scholar
  27. 27.
    Shkolmik, A., Tedrake, R.: Path planning in 1000+ dimensions using a task-space voronoi bias. In: IEEE International Conference on Robotics and Automation, pp. 2892–2898 (2009)Google Scholar
  28. 28.
    Shvlab, N., Liu, G., Shoham, M., Trinkle, J.C.: Motion planning for a class of planar closed-chain manipulators. International Journal of Robotics Research 26(5), 457–473 (2007)CrossRefGoogle Scholar
  29. 29.
    Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific, Singapore (2005)MATHCrossRefGoogle Scholar
  30. 30.
    Stilman, M.: Task constrained motion planning in robot joint space. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3074–3081 (2007)Google Scholar
  31. 31.
    Tang, X., Thomas, S., Coleman, P., Amato, N.M.: Reachable distance space: Efficient sampling-based planning for spatially constrained systems. International Journal of Robotics Research 29(7), 916–934 (2010)CrossRefGoogle Scholar
  32. 32.
  33. 33.
    The MultiFario project web page,
  34. 34.
    The SOLID web page,
  35. 35.
    Tsai, L.W.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. John Wiley and Sons, Chichester (1999)Google Scholar
  36. 36.
    Um, T.T., Kim, B., Suh, C., Park, F.C.: Tangent space RRT with lazy projection: An efficient planning algorithm for constrained motions. In: Advances in Robot Kinematics, pp. 251–260 (2010)Google Scholar
  37. 37.
    Wampler, C., Morgan, A.: Solving the 6R inverse position problem using a generic-case solution methodology. Mechanism and Machine Theory 26(1), 91–106 (1991)CrossRefGoogle Scholar
  38. 38.
    Wedemeyer, W.J., Scheraga, H.: Exact analytical loop closure in proteins using polynomial equations. Journal of Computational Chemistry 20(8), 819–844 (1999)CrossRefGoogle Scholar
  39. 39.
    Yakey, J.H., LaValle, S.M., Kavraki, L.E.: Randomized path planning for linkages with closed kinematic chains. IEEE Transactions on Robotics and Automation 17(6), 951–959 (2001)CrossRefGoogle Scholar
  40. 40.
    Yao, Z., Gupta, K.: Path planning with general end-effector constraints: Using task space to guide configuration space search. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1875–1880 (2005)Google Scholar
  41. 41.
    Yershova, A., LaValle, S.M.: Improving motion planning algorithms by efficient nearest neighbor searching. IEEE Transactions on Robotics 23(1), 151–157 (2007)CrossRefGoogle Scholar
  42. 42.
    Yershova, A., LaValle, S.M.: Motion planning for highly constrained spaces. In: Robot Motion and Control. Lecture Notes on Control and Information Sciences, vol. 396, pp. 297–306 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Josep M. Porta
    • 1
  • Léonard Jaillet
    • 1
  1. 1.Institut de Robòtica i Informàtica IndustrialCSIC-UPC 

Personalised recommendations