CCQ: Efficient Local Planning Using Connection Collision Query

  • Min Tang
  • Young J. Kim
  • Dinesh Manocha
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 68)


We introduce a novel proximity query, called connection collision query (CCQ), and use it for efficient and exact local planning in sampling-based motion planners. Given two collision-free configurations, CCQ checks whether these configurations can be connected by a given continuous path that either lies completely in the free space or penetrates any obstacle by at most ε , a given threshold. Our approach is general, robust, and can handle different continuous path formulations. We have integrated the CCQ algorithm with sampling-based motion planners and can perform reliable local planning queries with little performance degradation, as compared to prior methods. Moreover, the CCQ-based exact local planner is about an order of magnitude faster than prior exact local planning algorithms.


Local Planning Local Planner Screw Motion Boolean Query Collision Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amato, N., Bayazit, O., Jones, C., Vallejo, D.: Choosing good distance metrics and local planners for probabilistic roadmap methods. IEEE Transactions on Robotics and Automation 16(4), 442–447 (2000)CrossRefGoogle Scholar
  2. 2.
    Bohlin, R., Kavraki, L.: Path planning using Lazy PRM. In: Proceedings IEEE International Conference on Robotics & Automation, pp. 521–528 (2000)Google Scholar
  3. 3.
    Canny, J.F.: Collision detection for moving polyhedra. IEEE Trans. PAMI 8, 200–209 (1986)Google Scholar
  4. 4.
    Ferre, E., Laumond, J.-P.: An iterative diffusion algorithm for part disassembly. In: Proceedings IEEE International Conference on Robotics & Automation, pp. 3149–3154 (2004)Google Scholar
  5. 5.
    Hofer, M., Pottmann, H., Ravani, B.: Geometric design of motions constrained by a contacting surface pair. Comput. Aided Geom. Des. 20(8-9), 523–547 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hsu, D.: Randomized single-query motion planning in expansive spaces. PhD thesis (2000)Google Scholar
  7. 7.
    Hsu, D., Kavraki, L.E., Latombe, J.-C., Motwani, R., Sorkin, S.: On finding narrow passages with probabilistic roadmap planners. In: International Workshop on the Algorithmic Foundations of Robotics (WAFR), pp. 141–154 (1998)Google Scholar
  8. 8.
    Isto, P.: Constructing probabilistic roadmaps with powerful local planning and path optimization. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2323–2328 (2002)Google Scholar
  9. 9.
    Ji, X., Xiao, J.: Planning motion compliant to complex contact states. International Journal of Robotics Research 20(6), 446–465 (2001)CrossRefGoogle Scholar
  10. 10.
    Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics & Automation 12(4), 566–580 (1996)CrossRefGoogle Scholar
  11. 11.
    Kuffner, J.J.: Effective sampling and distance metrics for 3D rigid body path planning. In: Proceedings IEEE International Conference on Robotics & Automation, pp. 3993–3998 (2004)Google Scholar
  12. 12.
    Larsen, E., Gottschalk, S., Lin, M., Manocha, D.: Fast proximity queries with swept sphere volumes. Technical Report TR99-018, Department of Computer Science, University of North Carolina (1999)Google Scholar
  13. 13.
    Latombe, J.-C.: Robot Motion Planning. Kluwer, Boston (1991)Google Scholar
  14. 14.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006), MATHCrossRefGoogle Scholar
  15. 15.
    LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: Progress and prospects. In: Proceedings Workshop on the Algorithmic Foundations of Robotics, pp. 293–308 (2000)Google Scholar
  16. 16.
    Mirtich, B.V.: Impulse-based Dynamic Simulation of Rigid Body Systems. PhD thesis, University of California, Berkeley (1996)Google Scholar
  17. 17.
    Pan, J., Lauterbach, C., Manocha, D.: G-planner: Real-time motion planning and global navigation using gpus. In: AAAI Conference on Artificial Intelligence, pp. 1245–1251 (2010)Google Scholar
  18. 18.
    Redon, S., Kheddar, A., Coquillart, S.: Fast continuous collision detection between rigid bodies. In: Proc. of Eurographics (Computer Graphics Forum), pp. 279–288 (2002)Google Scholar
  19. 19.
    Redon, S., Kim, Y.J., Lin, M.C., Manocha, D.: Fast continuous collision detection for articulated models. In: Proceedings of ACM Symposium on Solid Modeling and Applications, pp. 145–156 (2004)Google Scholar
  20. 20.
    Redon, S., Lin, M.: Practical local planning in the contact space. In: Proceedings IEEE International Conference on Robotics & Automation, pp. 4200–4205 (2005)Google Scholar
  21. 21.
    Rossignac, J.R., Kim, J.J.: Computing and visualizing pose-interpolating 3d motions. Computer-Aided Design 33(4), 279–291 (2001)CrossRefGoogle Scholar
  22. 22.
    Sánchez, G., Latombe, J.-C.: A single-query bi-directional probabilistic roadmap planner with lazy collision checking, pp. 403–417 (2003)Google Scholar
  23. 23.
    Schwarzer, F., Saha, M., Latombe, J.-C.: Adaptive dynamic collision checking for single and multiple articulated robots in complex environments. IEEE Transactions on Robotics 21(3), 338–353 (2005)CrossRefGoogle Scholar
  24. 24.
    Tang, M., Kim, Y.J., Manocha, D.: C2A: Controlled conservative advancement for continuous collision detection of polygonal models. In: Proc. of IEEE Conference on Robotics and Automation (2009)Google Scholar
  25. 25.
    Zefran, M., Kumar, V.: A variational calculus framework for motion planning. In: Proceedings IEEE International Conference on Robotics & Automation, pp. 415–420 (1997)Google Scholar
  26. 26.
    Zhang, L., Kim, Y.J., Manocha, D.: A fast and practical algorithm for generalized penetration depth computation. In: Robotics: Science and Systems (2007)Google Scholar
  27. 27.
    Zhang, L., Manocha, D.: Constrained motion interpolation with distance constraints. In: International Workshop on the Algorithmic Foundations of Robotics (WAFR), pp. 269–284 (2008)Google Scholar
  28. 28.
    Zhang, L., Manocha, D.: An efficient retraction-based RRT planner. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3743–3750 (2008)Google Scholar
  29. 29.
    Zhang, X., Lee, M., Kim, Y.J.: Interactive continuous collision detection for non-convex polyhedra. The Visual Computer, 749–760 (2006)Google Scholar
  30. 30.
    Zhang, X., Redon, S., Lee, M., Kim, Y.J.: Continuous collision detection for articulated models using taylor models and temporal culling. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007), vol. 26(3), p. 15 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Min Tang
    • 1
  • Young J. Kim
    • 1
  • Dinesh Manocha
    • 2
  1. 1.Dept of Computer Science and EngineeringEwha Womans UniversitySeoulKorea
  2. 2.Dept of Computer ScienceUniversity of North CarolinaChapel HillU.S.A

Personalised recommendations