The Impact of Qualification on the Application of Qualitative Spatial and Temporal Reasoning Calculi

  • Carl Schultz
  • Robert Amor
  • Hans W. Guesgen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6464)


Ever since Allen introduced his qualitative interval algebra in 1983, the area of qualitative spatial and temporal reasoning (QSTR) has been motivated by potential application areas that require human-oriented, commonsense reasoning. Despite this, it is well recognised in the community that there are relatively few commercial applications that heavily employ QSTR calculi. In this paper we directly address this issue by establishing a theoretical foundation for describing, developing and analysing QSTR based applications. We present an analysis of QSTR calculus qualification and investigate the impact that qualification has on a QSTR application’s reasoning properties such as completeness and soundness. Our definition of QSTR applications also provides software developers with a basic template to begin creating their own applications. Concrete examples of existing QSTR applications are used to demonstrate and motivate this research.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26, 832–843 (1983)CrossRefMATHGoogle Scholar
  2. 2.
    Cohn, A.G., Renz, J.: Qualitative spatial reasoning. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation. Elsevier, Amsterdam (2007)Google Scholar
  3. 3.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, San Mateo (1992)Google Scholar
  4. 4.
    Ligozat, G., Mitra, D., Condotta, J.-F.: Spatial and temporal reasoning: beyond allens calculus. AI Communications 17(4), 223–233 (2004)MathSciNetMATHGoogle Scholar
  5. 5.
    Renz, J., Ligozat, G.: Weak composition for qualitative spatial and temporal reasoning. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 534–548. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Li, S., Ying, M.: Region connection calculus: Its models and composition table. Artif. Intell. 145(1-2), 121–146 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Renz, J.: Maximal tractable fragments of the region connection calculus: A complete analysis. In: Dean, T. (ed.) IJCAI, pp. 448–455. Morgan Kaufmann, San Francisco (1999)Google Scholar
  8. 8.
    Nebel, B., Burckert, H.-J.: Reasoning about temporal relations: A maximal tractable subclass of allens interval algebra. J. ACM 42(1), 43–66 (1995)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Wallgrun, J.O., Frommberger, L., Wolter, D., Dylla, F., Freksa, C.: Qualitative Spatial Representation and Reasoning in the SparQ-Toolbox. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition 2007. LNCS (LNAI), vol. 4387, pp. 39–58. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Hahmann, T., Gruninger, M.: Detecting physical defects: A practical 2d-study of cracks and holes. In: AAAI Spring Symposium on Benchmarking of Qualitative Spatial and Temporal Reasoning Systems, Palo Alto, Technical Report SS-09-02, pp. 11–16. AAAI Press, Menlo Park (2009)Google Scholar
  11. 11.
    Nokel, K.: Temporally Distributed Symptoms in Technical Diagnosis. LNCS, vol. 517. Springer, Heidelberg (1991)MATHGoogle Scholar
  12. 12.
    Wolter, D., Dylla, F., Wolfl, S., Wallgrun, J.O., Frommberger, L., Nebel, B., Freksa, C.: Sailaway: Spatial cognition in sea navigation. In: 31st Annual German Conference on AI Advances in Artificial Intelligence, vol. 22(1), pp. 28–30. Springer, Kaiserslautern (September 2008)Google Scholar
  13. 13.
    Egenhofer, M.J.: Query Processing in Spatial-Query-by-Sketch. J. Vis. Lang. Comput. 8(4), 403–424 (1997)CrossRefGoogle Scholar
  14. 14.
    Schultz, C.P.L., Amor, R., Lobb, B., Guesgen, H.W.: Qualitative design support for engineering and architecture. Advanced Engineering Informatics 23, 68–80 (2009)CrossRefGoogle Scholar
  15. 15.
    Wolfl, S., Westphal, M.: On combinations of binary qualitative constraint calculi. In: Boutilier, C. (ed.) 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, pp. 967–973 (July 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Carl Schultz
    • 1
  • Robert Amor
    • 2
  • Hans W. Guesgen
    • 3
  1. 1.SFB/TR 8 Spatial CognitionThe University of BremenGermany
  2. 2.The University of AucklandNew Zealand
  3. 3.Massey UniversityNew Zealand

Personalised recommendations