Performance of Infeasibility Empowered Memetic Algorithm (IEMA) on Engineering Design Problems

  • Hemant K. Singh
  • Tapabrata Ray
  • Warren Smith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6464)


Engineering design optimization problems often involve a number of constraints. These constraints may result from factors such as practicality, safety and functionality of the design and/or limit on time and resources. In addition, for many design problems, each function evaluation may be a result of an expensive computational procedure (such as CFD, FEA etc.), which imposes a limitation on the number of function evaluations that can be carried out to find a near optimal solution. Consequently, there is a significant interest in the optimization community to develop efficient algorithms to deal with constraint optimization problems. In this paper, a new memetic algorithm is presented, which incorporates two mechanisms to expedite the convergence towards the optimum. First is the use of marginally infeasible solutions to intensify the search near constraint boundary, where optimum solution(s) are most likely to be found. Second is performing local search from promising solutions in order to inject good quality solutions in the population early during the search. The performance of the presented algorithm is demonstrated on a set of engineering design problems, using a low computation budget (1000 function evaluations).


constraint handling engineering design expensive problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering 191(11-12), 1245–1287 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Coello Coello, C.A.: Treating constraints as objectives for single-objective evolutionary optimization. Engineering Optimization 32(3), 275–308 (2000)CrossRefGoogle Scholar
  3. 3.
    Davis, L. (ed.): Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)Google Scholar
  4. 4.
    Deb, K.: Optimal design of a welded beam via genetic algorithms. AIAA Journal 29(8), 2013–2015 (1991)Google Scholar
  5. 5.
    Deb, K.: An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186, 311–338 (2000)CrossRefzbMATHGoogle Scholar
  6. 6.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley and Sons Pvt. Ltd., Chichester (2001)zbMATHGoogle Scholar
  7. 7.
    Deb, K., Goyal, M.: A combined genetic adaptive search (geneas) for engineering design. Computer Science and Informatics 26, 30–45 (1996)Google Scholar
  8. 8.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)CrossRefGoogle Scholar
  9. 9.
    Deb, K.: An Efficient Constraint Handling Method for Genetic Algorithms. Computer Methods in Applied Mechanics and Engineering 186(2), 311–338 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Gu, L., Yang, R., Tho, C., Makowski, M., Faruque, O., Li, Y.: Optimisation and robustness for crashworthiness of side impact. International Journal of Vehicle Design 26(4), 348–360 (2001)CrossRefGoogle Scholar
  11. 11.
    Hadj-Alouane, A.B., Bean, J.C.: A Genetic Algorithm for the Multiple-Choice Integer Program. Operations Research 45, 92–101 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hinterding, R., Michalewicz, Z.: Your brains and my beauty: parent matching for constrained optimisation. In: Proceedings of 1998 IEEE Conference on Evolutionary Computaion, pp. 810–815 (May 1998)Google Scholar
  13. 13.
    Hoffmeister, F., Sprave, J.: Problem-independent handling of constraints by use of metric penalty functions. In: Fogel, L.J., Angeline, P.J., Bäck, T. (eds.) Proceedings of the Fifth Annual Conference on Evolutionary Programming (EP 1996), pp. 289–294. The MIT Press, San Diego (February 1996)Google Scholar
  14. 14.
    Isaacs, A.: Development of optimization methods to solve computationally expensive problems. Ph.D. thesis, University of New South Wales, Australian Defence Force Academy (UNSW@ADFA), Canberra, Australia (2009)Google Scholar
  15. 15.
    Joines, J., Houck, C.: On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs. In: Fogel, D. (ed.) Proceedings of the First IEEE Conference on Evolutionary Computation, Orlando, Florida, pp. 579–584 (1994)Google Scholar
  16. 16.
    Kuri-Morales, A., Quezada, C.V.: A Universal Eclectic Genetic Algorithm for Constrained Optimization. In: Proceedings 6th European Congress on Intelligent Techniques & Soft Computing, EUFIT 1998, Verlag Mainz, Aachen, Germany, pp. 518–522 (September 1998)Google Scholar
  17. 17.
    Mezura-Montes, E., Coello Coello, C.: A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation 9(1), 1–17 (2005)CrossRefzbMATHGoogle Scholar
  18. 18.
    Michalewicz, Z.: Genetic Algorithms, Numerical Optimization, and Constraints. In: Eshelman, L.J. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms (ICGA 1995), pp. 151–158. University of Pittsburgh, Morgan Kaufmann Publishers, San Mateo, California (July 1995)Google Scholar
  19. 19.
    Michalewicz, Z.: A Survey of Constraint Handling Techniques in Evolutionary Computation Methods. In: McDonnell, J.R., Reynolds, R.G., Fogel, D.B. (eds.) Proceedings of the 4th Annual Conference on Evolutionary Programming, pp. 135–155. The MIT Press, Cambridge (1995)Google Scholar
  20. 20.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996)CrossRefzbMATHGoogle Scholar
  21. 21.
    Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Tech. Rep. C3P report 826, Caltech Concurrent Computation Program, Caltech, California, USA (1989)Google Scholar
  22. 22.
    Ong, Y.S., Lim, M., Chen, X.: Memetic computation;past, present; future [research frontier]. IEEE Computational Intelligence Magazine 5(2), 24–31 (2010)CrossRefGoogle Scholar
  23. 23.
    Parsons, M., Scott, R.: Formulation of multicriterion design optimization problems for solution with scalar numerical optimization methods. Journal of Ship Research 48(1), 61–76 (2004)Google Scholar
  24. 24.
    Powell, M.: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson, G. (ed.) Numerical Analysis, pp. 144–157. Springer, Heidelberg (1978)CrossRefGoogle Scholar
  25. 25.
    Ray, T., Liew, K.: Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Transactions on Evolutionary Computation 7(4), 386–396 (2003)CrossRefGoogle Scholar
  26. 26.
    Ray, T., Tai, K., Seow, K.: Multiobjective design optimization by an evolutionary algorithm. Engineering Optimization 33(4), 399–424 (2001)CrossRefGoogle Scholar
  27. 27.
    Ray, T., Singh, H.K., Isaacs, A., Smith, W.: Infeasibility driven evolutionary algorithm for constrained optimization. In: Mezura-Montes, E. (ed.) Constraint Handling in Evolutionary Optimization. Studies in Computational Intelligence, pp. 145–165. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Saxena, D.K., Deb, K.: Trading on infeasibility by exploiting constraint’s criticality through multi-objectivization: A system design perspective. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2007), September 25-28, pp. 919–926 (2007)Google Scholar
  29. 29.
    Siddall, J.N.: Optimal engineering design - principles and applications. Marcel Dekker, Inc., New York (1982)Google Scholar
  30. 30.
    Singh, H.K., Isaacs, A., Ray, T., Smith, W.: Infeasibility Driven Evolutionary Algorithm (IDEA) for Engineering Design Optimization. In: Wobcke, W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 104–115. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Vieira, D.A.G., Adriano, R.L.S., Vasconcelos, J.A., Krahenbuhl, L.: Treating constraints as objectives in multiobjective optimization problems using niched pareto genetic algorithm. IEEE Transactions on Magnetics 40(2) (March 2004)Google Scholar
  32. 32.
    Xiao, J., Michalewicz, Z., Trojanowski, K.: Adaptive Evolutionary Planner/Navigator for Mobile Robots. IEEE Transactions on Evolutionary Computation 1(1), 18–28 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hemant K. Singh
    • 1
  • Tapabrata Ray
    • 1
  • Warren Smith
    • 1
  1. 1.School of Engineering and Information TechnologyUniversity of New South Wales, Australian Defence Force AcademyCanberraAustralia

Personalised recommendations