Learning Parse-Free Event-Based Features for Textual Entailment Recognition

  • Bahadorreza Ofoghi
  • John Yearwood
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6464)

Abstract

We propose new parse-free event-based features to be used in conjunction with lexical, syntactic, and semantic features of texts and hypotheses for Machine Learning-based Recognizing Textual Entailment. Our new similarity features are extracted without using shallow semantic parsers, but still lexical and compositional semantics are not left out. Our experimental results demonstrate that these features can improve the effectiveness of the identification of entailment and no-entailment relationships.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rodrigo, A., Penas, A., Verdejo, F.: Towards an entity-based recognition of textual entailment. In: Proceedings of the Fourth PASCAL Challenges Workshop on Recognizing Textual Entailment, Gaithersburg, USA (2008)Google Scholar
  2. 2.
    Ageno, A., Farwell, D., Ferres, D., Cruz, F., Rodriguez, H.: TALP at TAC 2008: A semantic approach to recognizing textual entailment. In: Proceedings of the Fourth PASCAL Challenges Workshop on Recognizing Textual Entailment, Gaithersburg, USA (2008)Google Scholar
  3. 3.
    Burchardt, A., Pennacchiotti, M.: FATE: a FrameNet-Annotated Corpus for Textual Entailment. In: Proceedings of the Sixth International Language Resources and Evaluation (LREC 2008), Marrakech, Morocco (2008)Google Scholar
  4. 4.
    Burchardt, A., Pennacchiotti, M., Thater, S., Pinkal, M.: Assessing the impact of frame semantics on textual entailment. Natural Language Engineering 15(4), 527–550 (2009)CrossRefGoogle Scholar
  5. 5.
    Hickl, A., Bensley, J., Williams, J., Roberts, K., Rink, B., Shi, Y.: Recognizing textual entailment with LCC’s GROUNDHOG system. In: Proceedings of the Second PASCAL Challenges Workshop on Recognizing Textual Entailment, Venice, Italy, pp. 80–85 (2006)Google Scholar
  6. 6.
    Ofoghi, B., Yearwood, J., Ma, L.: The impact of frame semantic annotation, frame alignment techniques, and fusion methods on factoid answer processing. Journal of the American Society for Information Science and Technology (JASIST) 60(2), 247–263 (2009)CrossRefGoogle Scholar
  7. 7.
    Mac Cartney, B., Grenager, T., de Marneffe, M.-C., Cer, D., Manning, C.D.: Learning to recognize features of valid textual entailments. In: Proceedings of the Human Language Technology Conference of the NAACL, Main Conference, New York City (2006)Google Scholar
  8. 8.
    Fillmore, C.J.: Frame semantics and the nature of language. In: Proceedings of the Annals of the New York Academy of Sciences: Conference on the Origin and Development of Language and Speech, pp. 20–32 (1976)Google Scholar
  9. 9.
    Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In: Proceedings of the 17th International Conference on Computational Linguistics (COLING), pp. 86–90. Universite de Montreal, Montreal (1998)CrossRefGoogle Scholar
  10. 10.
    Corley, C., Mihalcea, R.: Measuring the semantic similarity of texts. In: Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment, Ann Arbor, MI (2005)Google Scholar
  11. 11.
    Sleator, D., Temperley, D.: Parsing English with a link grammar. In: Proceedings of the Third International Workshop on Parsing Technologies (1993)Google Scholar
  12. 12.
    Lin, D., Pantel, P.: DIRT - Discovery of inference rules from text. In: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, pp. 323–328 (2001)Google Scholar
  13. 13.
    Akhmatova, E., Molla, D.: Recognizing textual entailment via atomic propositions. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 385–403. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Zanzotto, F.M., Moschitti, A.: Automatic learning of textual entailments with cross-pair similarities. In: Proceedings of the 21st COLING and 44th ACL, Sydney, Australia (2006)Google Scholar
  15. 15.
    Zanzotto, F.M., Pennacchiotti, M., Moschitti, A.: A machine learning approach to textual entailment recognition. Natural Language Engineering 15(4), 551–582 (2009)CrossRefGoogle Scholar
  16. 16.
    Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of the Conference on New Methods in Language Processing, Manchester, UK (1994)Google Scholar
  17. 17.
    Lowe, J.B., Baker, C.F., Fillmore, C.J.: A frame-semantic approach to semantic annotation. In: Proceedings of the SIGLEX Workshop on Tagging Text with Lexical Semantics: Why, What, and How? (1997)Google Scholar
  18. 18.
    Ruppenhofer, J., Ellsworth, M., Petruck, M.R.L., Johnson, C.R.: FrameNet: Theory and practice (2005)Google Scholar
  19. 19.
    Erk, K., Pado, S.: Shalmaneser – A toolchain for shallow semantic parsing. In: Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC 2006), Genoa, Italy (2006)Google Scholar
  20. 20.
    Tatu, M., Moldovan, D.: A semantic approach to recognizing textual entailment. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing (HLT-EMNLP), Vancouver, British Columbia, Canada, pp. 371–378 (2005)Google Scholar
  21. 21.
    Yatbaz, M.A.: RTE4: Normalized dependency tree alignment using unsupervised n-gram word similarity score. In: Proceedings of the Fourth PASCAL Challenges Workshop on Recognizing Textual Entailment, Gaithersburg, USA (2008)Google Scholar
  22. 22.
    Kouylekov, M., Magnini, B.: Recognizing textual entailment with tree edit distance algorithms. In: Proceedings of the First PASCAL Challenges Workshop on Recognizing Textual Entailment, Southampton, UK, pp. 17–20 (2005)Google Scholar
  23. 23.
    Pazienza, M.T., Pennacchiotti, M., Zanzotto, F.M.: Textual entailment as syntactic graph distance: A rule based and a SVM based approach. In: Proceedings of the First PASCAL Challenges Workshop on Recognizing Textual Entailment, Southampton, UK, pp. 25–28 (2005)Google Scholar
  24. 24.
    Clark, P., Harrison, P.: Recognizing textual entailment with logic inference. In: Proceedings of the Fourth PASCAL Challenges Workshop on Recognizing Textual Entailment, Gaithersburg, USA (2008)Google Scholar
  25. 25.
    de Salvo Braz, R., Girju, R., Punyakanok, V., Roth, D., Sammons, M.: Textual entailment recognition based on dependency analysis and WordNet. In: Proceedings of the First PASCAL Challenges Workshop on Recognizing Textual Entailment, Southampton, UK, pp. 29–32 (2005)Google Scholar
  26. 26.
    Bosma, W.E., Callison-Burch, C.: Paraphrase substitution for recognizing textual entailment. In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 1–8. Springer, Heidelberg (2006)Google Scholar
  27. 27.
    Burchardt, A., Frank, A.: Approaching Textual Entailment with LFG and FrameNet Frames. In: Proceedings of the Second PASCAL Challenges Workshop on Recognizing Textual Entailment, Venice, Italy (2006)Google Scholar
  28. 28.
    Ofoghi, B., Yearwood, J.: UB.dmirg: A syntactic lexical system for recognizing textual entailments. In: Proceedings of the Second PASCAL Challenges Workshop on Recognizing Textual Entailment, Gaithersburg, USA (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bahadorreza Ofoghi
    • 1
    • 2
  • John Yearwood
    • 1
  1. 1.Centre for Informatics and Applied OptimizationUniversity of BallaratBallaratAustralia
  2. 2.Institute of Sport, Exercise, and Active LivingVictoria UniversityMelbourneAustralia

Personalised recommendations