Sources, Transport and Fate of Organic Pollutants in the Oceanic Environment

  • Rosalinda Gioia
  • Jordi Dachs
  • Luca Nizzetto
  • Naiara Berrojalbiz
  • Cristóbal Galbán
  • Sabino Del Vento
  • Laurence Méjanelle
  • Kevin C. Jones
Chapter

Abstract

Industrial, agricultural and other anthropogenic activities have lead to the introduction of thousands of pollutants, most of them synthetic organic compounds to the marine environment (Dachs and Méjanelle 2010). A fraction of these organic compounds, called persistent organic pollutants (POPs), are chemicals that have become a major concern because of their toxicity, persistence, bioaccumulation tendency, and susceptibility to undergo long-range atmospheric transport. Traditionally, much attention have been given to a few families of POPs, such as polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) such as DDT and hexachlorobenzene (HCB) and other byproducts of industrial processes or combustion such as dioxins and furans (PCDD/Fs) and polynuclear aromatic hydrocarbons (PAHs). However, these chemicals are a small fraction of the total known pollutants in the marine environment (Dachs and Méjanelle 2010) and presumably of the total potential pollutants occurring in the environment (Muir and Howard 2006). In any case, these few families of POPs have been detected everywhere on earth in abiotic and biotic matrices (Gioia et al. 2006, 2008a; Gilman et al. 1997; Jaward et al. 2004). Today, compounds with similar or different physical chemical properties (such as the polybrominated diphenyl ethers, PBDE and other fluorinated compounds, PFs) are being manufactured and widely used, potentially entering the environment and providing new challenges for the maintenance of its quality. Our current knowledge indicates that the cycling of these chemicals in the environment is highly complex; indeed their local, regional and global cycle is controlled by repeated air-surface exchange and interactions with the carbon cycle, especially the organic and soot carbon fractions. Because, a fraction of these chemicals are hydrophobic, they have the potential to accumulate in all the trophic levels of ecosystems, including those far away from sources. The number of known organic pollutants in marine waters, and other environmental compartments, has increased dramatically during the last decade, in part due to important analytical developments. Nowadays, even though much of our knowledge on organic pollutants is centered on a few chemical families (PCBs, HCHs, DDT, PAHs, etc.), these families should be viewed as markers or “surrogates” of other pollutants in marine waters with similar physical–chemical properties. In addition, other chemicals with different physical–chemical properties (i.e., greater water solubility, low volatility) may reach coastal and open oceans via rivers and undergo different environmental behavior, due to their ionic character. In fact, some of newly emerging compounds have been suggested to behave as passive tracers in waters (Yamashita et al. 2008), a behavior quite different from that shown by legacy POPs such as PCBs or HCHs.

References

  1. Accardi-Dey, A. and P.M. Gschwend, 2003: Reinterpreting literature sorption data considering both absorption into organic carbon and adsorption onto black carbon. Environ. Sci. Technol. 37, 99–106.CrossRefGoogle Scholar
  2. Andreae, M.O. and H. Raemdonck, 1983a: Dimethyl sulfide in the surface ocean and the marine atmosphere: A global view. Science 221, 744–747.CrossRefGoogle Scholar
  3. Andreae, M.O. and W.R. Barnard, 1983b: Determinations of trace quantities of dimethyl sulfide in aqueous solutions. Anal Chem. 55, 608–612.CrossRefGoogle Scholar
  4. Arnot, J.A. and F.A.P.C. Gobas, 2006: A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ. Rev. 14, 257–297.CrossRefGoogle Scholar
  5. Axelman, J., D. Broman, and C. Näf, 2000: Vertical flux and particulate/water dynamics of Polychlorinated Biphenyls (PCBs) in the open Baltic sea. Ambio 29, 210–216.Google Scholar
  6. Axelman, J. and D. Broman, 2001: Budget calculations for polychlorinated biphenyls (PCBs) in the Northern Hemisphere – a single-box approach. Tellus 53B, 235–259.Google Scholar
  7. Ayers, G.P. and R.W. Gillet, 2000: DMS and its oxidation products in the remote marine atmosphere: Implications for climate and atmospheric chemistry. J. Sea Res. 43, 275–286.CrossRefGoogle Scholar
  8. Azam, F., 1998: Microbial control of oceanic carbon loop: The plot thickens. Science 280, 694–696.CrossRefGoogle Scholar
  9. Bacelar, F.S., S. Dueri, E. Hernández-García, and J.M. Zaldivár, 2009: Joint effects of nutrients and contaminants on the dynamics of a food chain in marine ecosystems. Math. Biosci. 218, 24–32.CrossRefGoogle Scholar
  10. Berrojalbiz, N., S. Lacorte, A. Calbet, E. Saiz, C. Barata, and J. Dachs, 2009: Accumulation and cycling of polycyclic aromatic hydrocarbons in zooplankton. Environ. Sci. Technol. 43, 2295–2301.CrossRefGoogle Scholar
  11. Bidleman, T.F. and C.E. Olney, 1974: Chlorinated hydrocarbons in the Sargasso Sea atmosphere and surface water. Science 183, 516–518.CrossRefGoogle Scholar
  12. Bidleman T.F., G.W. Patton, D.A. Hinckley, M.D. Walla, W.E. Cotham, and B.T. Hargrave, 1999: Chlorinated pesticides and polychlorinated biphenyls in the atmosphere of the Canadian Arctic. In: Kurtz, D. (Ed.), Long-Range Transport of Pesticides, Lewis Publisher, Chelsea, MI.Google Scholar
  13. Boehm, P.D. and J.G. Quinn, 1973: Solubilization of hydrocarbons by the dissolved organic matter in sea water. Geochim. Cosmochim. Acta 37, 2459–2477.CrossRefGoogle Scholar
  14. Broman D., C. Näf, J. Axelman, C. Bandh, H. Pettersen, R. Johnstone, and P. Wallberg, 1996: Significance of bacteria in marine waters for the distribution of hydrophobic organic contaminants. Environ. Sci. Technol. 30, 1238.CrossRefGoogle Scholar
  15. Cincinelli, A., A.M. Stortini, M. Perugini, L. Checchini, and L. Lepri, 2001: Organic pollutants in sea surface microlayer and aerosol in the coastal environment of Leghorn (Tyrrhenian Sea). Mar. Chem. 76, 77–98.CrossRefGoogle Scholar
  16. Crutzen, P.J. and E.F. Stoermer, 2000: The “Anthropocene”. Global Change Newsl. 41, 17–18.Google Scholar
  17. Dachs, J., J.M. Bayona, S.W. Fowler, J.C. Miquel, and J. Albaigés, 1996: Vertical fluxes of polycyclic aromatic hydrocarbons and organochlorine compounds in the western Alboran Sea (southwestern Mediterranean). Mar. Chem. 52, 75–86.CrossRefGoogle Scholar
  18. Dachs, J., J.M. Bayona, C. Raoux, and J. Albaigés, 1997a: Spatial, vertical distribution and budget of polycyclic aromatic hydrocarbons in the western Mediterranean seawater. Environ. Sci. Technol. 31, 682–688.CrossRefGoogle Scholar
  19. Dachs, J., J.M. Bayona, and J. Albaigés, 1997b: Spatial distribution, vertical profiles and budget of organochlorine compounds in Western Mediterranean seawater. Mar. Chem. 57, 313–324.CrossRefGoogle Scholar
  20. Dachs, J., J.M. Bayona, J. Fillaux, A. Saliot, and J. Albaigés, 1999: Evaluation of anthropogenic and biogenic inputs into the western Mediterranean using molecular markers. Mar. Chem. 65, 195–210.CrossRefGoogle Scholar
  21. Dachs, J., S.J. Eisenreich, and R.M. Hoff, 2000: Influence of eutrophication on air–water exchange, vertical fluxes and phytoplankton concentrations of persistent organic pollutants. Environ. Sci. Technol. 34, 1095–1102.CrossRefGoogle Scholar
  22. Dachs, J., R. Lohmann, W.A. Ockenden, L. Mejanelle, S.J. Eisenreich, and K.C. Jones, 2002: Oceanic biogeochemical controls on global dynamics of persistent organic pollutants. Environ. Sci. Technol. 36, 4229–4237.CrossRefGoogle Scholar
  23. Dachs, J. and L. Méjanelle, 2010: Organic pollutants in coastal waters, sediments and biota: A relevant driver for ecosystems during the anthropocene? Estuar. Coast. 33, 1–14.CrossRefGoogle Scholar
  24. DeLorenzo, M.E and L. Serrano, 2003: Individual and mixture toxicity of three pesticides; atrazine, chlorpyrifos, and chlorothalonil to the marine phytoplankton species Dunaliella tertiolecta. J. Environ. Sci. Health Part B, B38 (5), 529–538.Google Scholar
  25. Del Vento, S. and J. Dachs, 2007a: Influence of the surface microlayer on atmospheric deposition of aerosols and polycyclic aromatic hydrocarbons. Atmos. Environ. 41, 4920–4930.CrossRefGoogle Scholar
  26. Del Vento, S. and J. Dachs, 2007b: Atmospheric occurrence and deposition of polycyclic aromatic hydrocarbons in the northeast tropical and subtropical Atlantic Ocean. Environ. Sci. Technol. 41, 5608–5613.CrossRefGoogle Scholar
  27. Donkin, P., E.L. Smith, and S.J. Rowland, 2003: Toxic effects of unresolved complex mixtures of aromatic hydrocarbons accumulated by mussels, Mytilus Edulis, from contaminated field sites. Environ. Sci. Technol. 37, 4825–4831.CrossRefGoogle Scholar
  28. Echeveste, P., S. Agustí, and J. Dachs, 2010: Cell size dependent toxicity thresholds of polycyclic aromatic hydrocabons to cultured and natural phytoplankton populations. Environ. Pollut. 158, 299–307.CrossRefGoogle Scholar
  29. Eisenberg, J.N.S., D.H. Bennett, and T.E. Mckone, 1998: Chemical dynamics of persistent organic pollutants: A sensitivity analysis relating soil concentration levels to atmospheric emissions. Environ. Sci. Technol. 32, 115–123.CrossRefGoogle Scholar
  30. Farré, M., S. Pérez, L. Kantiani, and D. Barceló, 2008: Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trends. Anal. Chem. 27, 991–1007.CrossRefGoogle Scholar
  31. Fowler, S.W. and G.A. Knauer, 1986: Role of large particles in the transport of elements and organic compounds through the oceanic water column. Progr. Oceanogr. 16, 147–194.CrossRefGoogle Scholar
  32. Frew, N.M., J.C. Goldman, M.R. Dennett, and A.S. Johnson, 1990: Impact of phytoplankton-generated surfactants on air–sea gas exchange. J. Geophys. Res. Ocean 95, 3337–3352.CrossRefGoogle Scholar
  33. Garcia-Flor, N., C. Guitart, M. Ábalos, J. Dachs, J.M. Bayona, and J. Albaigés, 2005a: Enrichment of organochlorine compounds in the sea surface microlayer: An organic carbon driven process. Mar. Chem. 96, 331–345.CrossRefGoogle Scholar
  34. Garcia-Flor, N., C. Guitart, L. Bodineau, J. Dachs, J.M. Bayona, and J. Albaigés, 2005b: Comparison of sampling devices for the determination of polychlorinated biphenyls in the sea surface microlayer. Mar. Environ. Res. 59, 255–275.CrossRefGoogle Scholar
  35. Garcia-Flor, N., J. Dachs, J.M. Bayona, and J. Albaigés, 2009: Surface waters are a source of polychlorinated biphenyls to the coastal atmosphere of the north-western Mediterranean Sea. Chemosphere 75, 1144–1152.CrossRefGoogle Scholar
  36. Gilman, A., E. Dewailly, M. Feeley, V. Jerome, H. Kuhnlein, B. Kwavnick, S. Neve, B. Tracy, P. Usher, J. Van Oostdam, J. Walker, and B. Wheatley, 1997: Chapter 4: Human health. In: Jensen, J., K. Adhare, R. Shearer (Eds.), Canadian Arctic Contaminants Assessment Report, Department of Indian and Northern Affairs, Ottawa, pp. 295–377.Google Scholar
  37. Gioia, R., E. Steinnes, G.O. Thomas, S.N. Meijer, and K.C. Jones, 2006: Persistent organic pollutants in European background air: Derivation of spatial and temporal trends. J. Environ. Monitor. 8, 700–710.CrossRefGoogle Scholar
  38. Gioia, R, L. Nizzetto, R. Lohmann, J. Dachs, and K.C. Jones: 2008a: Polychlorinated biphenyls (PCBs) in air and seawater of the Atlantic Ocean: Sources, trends and processes. Environ. Sci. Technol. 42, 1416–1422.CrossRefGoogle Scholar
  39. Gioia, R., R. Lohmann, J. Dachs, C. Temme, S. Lakaschus, D. Schulz-Bull, I. Hand, and K.C. Jones, 2008b: Polychlorinated biphenyls in air and seawater of the North Atlantic and the Arctic Ocean, J. Geophys. Res. 113, D19302, doi: 10.1029/2007JD009750.CrossRefGoogle Scholar
  40. Gioia, R., S. Eckhardt, K. Breivik, F.M. Jaward, A. Prieto, L. Nizzetto, and K.C. Jones, 2011: Evidence for Major Emissions of PCBs in the West African Region. Environ. Sci. Technol. 45(4), 1349–1355.Google Scholar
  41. Gomez-Gutierrez, A.I., E. Jover, L. Bodineau, J. Albaigés, and J.M. Bayona, 2006: Organic contaminant loads into the Western Mediterranean Sea: Estimate of Ebro River inputs. Chemosphere 65, 224–236.CrossRefGoogle Scholar
  42. Gouin, T., G.O. Thomas, I. Cousins, J. Barber, D. Mackay, and K.C. Jones, 2002: Air-surface exchange of polybrominated diphenyl ethers and polychlorinated biphenyls. Environ. Sci. Technol. 38, 1426–1434.CrossRefGoogle Scholar
  43. Grote, M., G. Schüürmann, and R. Altenburger, 2005: Modelling photoinduced algal toxicity of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 39, 4141–4149.CrossRefGoogle Scholar
  44. Gustafsson, Ö., F. Haghseta, C. Chan, J. Macfarlane, and P.M. Gschwend, 1997: Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability. Environ. Sci. Technol. 31, 203–209.CrossRefGoogle Scholar
  45. Gustafsson, Ö. and P.M. Gschwend, 1997: Aquatic colloids: Concepts, definitions, and current challenges. Limnol. Oceanogr. 42, 519–528.CrossRefGoogle Scholar
  46. Gustafsson, Ö., N. Nilsson, and T.D. Bucheli, 2001: Dynamic colloid-water partitioning of pyrene through a coastal baltic spring bloom. Environ. Sci. Technol. 35, 4001–4006.CrossRefGoogle Scholar
  47. Halsall, C.J., A.J. Sweetman, L.A. Barrie, and K.C. Jones, 2001: Modelling the behaviour of PAHs during atmospheric transport from the UK to the Arctic. Atmos. Environ. 35, 255–267.CrossRefGoogle Scholar
  48. Handa, N., E. Tanoue, and T. Hama, 2001: Dynamics and Characterization of Marine Organic Matter, Kluwer Academic Publisher, London, 560pp.Google Scholar
  49. Hardy, J.T., 1982: The sea surface microlayer: Biology, chemistry and anthropogenic enrichment. Progr. Oceanogr. 11, 307–328.CrossRefGoogle Scholar
  50. Harner, T., H. Kylin, T.F. Bidleman, C. Halsall, W.J. Strachan, L. Barrie, and P. Fellin, 1998: Polychlorinated naphtalenes and coplanar polychlorinated byphenyls in Arctic air. Environ. Sci. Technol. 32, 3257–3265.CrossRefGoogle Scholar
  51. Hillery, B.R., I. Basu, C.W. Sweet, and R.A. Hites, 1997: Temporal and spatial trends in a long-term study of gas-phase PCB concentrations near the Great Lakes. Environ. Sci. Technol. 31, 1811–1816.CrossRefGoogle Scholar
  52. Hornbuckle, K.C., C.W. Sweet, R.F. Pearson, and D.L. Swackhamer, 1995: Assessing annual water–air fluxes of polychlorinated biphenyls in Lake Michigan. Environ. Sci. Technol. 29, 869–877.CrossRefGoogle Scholar
  53. Hornbuckle, K.C. and S.J. Eisenreich, 1996: Dynamics of gaseous semivolatile organic compounds in a terrestrial ecosystem-effects of diurnal and seasonal climate variations. Atmos. Environ. 30, 3935–3945.CrossRefGoogle Scholar
  54. Horstmann, M. and M.S. McLachlan, 1998: Atmospheric deposition of semivolatile organic compounds to two forest canopies. Atmos. Environ. 32, 1799–1809.CrossRefGoogle Scholar
  55. Iwata, I., S. Tanabe, N. Sakai, and R. Tatsukawa, 1993: Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate. Environ. Sci. Technol. 27, 1080–1098.CrossRefGoogle Scholar
  56. Jaffé, R., 1991: Fate of hydrophobic organic pollutants in the aquatic environment: A review. Environ. Pollut. 69, 237–257.CrossRefGoogle Scholar
  57. Jahnke, A., U. Berger, R. Ebinghaus, and C. Temme, 2007: Latitudinal gradient of airborne polyfluorinated alkyl substances in the marine atmosphere between Germany and South Africa (53 degrees N-33 degrees S). Environ. Sci. Technol. 41, 3055–3061.CrossRefGoogle Scholar
  58. Jaward, F.M., S.N. Meijer, E. Steinnes, G.O. Thomas, and K.C. Jones, 2004: Further studies on the latitudinal and temporal trends of persistent organic pollutants in Norwegian and U.K. background air. Environ. Sci. Technol. 38, 2523–2530.CrossRefGoogle Scholar
  59. Jonker, M.T. and A.A. Koelmans, 2002: Sorption of polycylic aromatic hydrocarbons and polychlorinated biphenyls in soot and soot-like materials in the aqueous environment: mechanistic considerations. Environ. Sci. Technol. 36, 3725–3734.CrossRefGoogle Scholar
  60. Jönsson, A., Ö. Gustafsson, J. Axelman, and H. Sundberg, 2003: Global accounting of PCBs in the continental shelf sediments. Environ. Sci. Technol. 37, 245–255.CrossRefGoogle Scholar
  61. Jurado, E., R. Lohmann, S. Meijer, K.C. Jones, and J. Dachs, 2004: Latitudinal and seasonal capacity of the surface ocean as a reservoir of polychlorinated biphenyls. Environ. Pollut. 128, 149–162.CrossRefGoogle Scholar
  62. Jurado, E., F. Jaward, R. Lohmann, K.C. Jones, R. Simó, and J. Dachs, 2005: Wet deposition of persistent organic pollutants to the global oceans. Environ. Sci. Technol. 39, 2426–2435.CrossRefGoogle Scholar
  63. Jurado, E., J. Dachs, D. Marinov, and J.M. Zaldivar, 2007: Fate of persistent organic pollutants in the water column: Does turbulent mixing matter? Mar. Pollut. Bull. 54, 441–451.CrossRefGoogle Scholar
  64. Jurado, E. and J. Dachs, 2008: Seasonality in the “grasshopping” and atmospheric residence times of persistent organic pollutants over the oceans. Geophys. Res. Lett. 35, L17805, doi: 10.1029/2008GL034698.CrossRefGoogle Scholar
  65. Kasprzyk-Hordern, B., R.M. Dinsdale, and A.J. Guwy, 2008: The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales. UK Water Res. 42, 3498–3518.CrossRefGoogle Scholar
  66. Kepkay, P.E., 1994: Particle aggregation and the biological reactivity of colloids. Mar. Ecol. Prog. Ser. 109, 293–304.CrossRefGoogle Scholar
  67. Kepkay, P.E., 2000: Colloids and the ocean carbon cycle. In: Wangersky, PJ (Ed.), The Handbook of Environmental Chemistry, Part D: Marine Chemistry, Springer-Verlag, New York, pp. 35–56.Google Scholar
  68. Kucklick, J.R. and J.E. Baker, 1990: Organochlorines in Lake Superior’s food web. Environ. Sci. Technol. 32, 1192–1198.CrossRefGoogle Scholar
  69. Lakaschus, S., K. Weber, F. Wania, R. Bruhn, and O. Schrems, 2002: The air−sea equilibrium and time trend of hexachlorocyclohexanes in the Atlantic Ocean between the Arctic and Antarctica. Environ. Sci. Technol. 36,138–145.CrossRefGoogle Scholar
  70. Lee, R.G.M., V. Burnett, T. Harner, and K.C. Jones, 2000: Gas-particle partition measurements of PAHs at Hazelrigg, UK. Environmental Science and Technology, 34(3). pp. 393–398. ISSN 0013-936X.Google Scholar
  71. Lee, R.G.M., H. Hung, D. Mackay, and K.C. Jones, 1998: Measurement and modelling of the diurnal cycling of atmospheric PCBs and PAHs. Environ. Sci. Technol. 32, 2172–2179.CrossRefGoogle Scholar
  72. Letcher, R.J., R.J. Norstrom, and D.C.G. Muir, 1998: Biotransformation versus bioaccumulation: Sources of methyl sulfone PCB and 4,4′-DDE metabolites in the polar bear food chain, Environ. Sci. Technol. 32, pp. 1656–1661.CrossRefGoogle Scholar
  73. Li, Y.H., 2000: A Compendium of Geochemistry, Princeton University Press, Princeton, NJ, 475 pp.Google Scholar
  74. Liss, R.S. and R.A. Duce, 1997: The Sea Surface and Global Change, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  75. Lohmann, R., P.A. Brunciak, J. Dachs, C.L. Gigliotti, E. Nelson, D. Van Ry, T. Glenn, S.J. Eisenreich, J.L. Jones, and K.C. Jones, 2003: Processes controlling diurnal variations of PCDD/Fs in the New Jersey coastal atmosphere. Atmos. Environ. 37, 959–969.CrossRefGoogle Scholar
  76. Lohmann, R., E. Jurado, J. Dachs, and K.C. Jones, 2006: Quantifying the importance of the atmospheric sink of polychlorinated dibenzo dioxins and furans relative to other global loss processes. J. Geophys. Res. 111, D21303, doi: 10. 1029/2005JD006983.CrossRefGoogle Scholar
  77. Lohmann, R., K. Breivik, J. Dachs, and D. Muir, 2007: Global fate of POPs: Current and future research trends. Environ. Pollut. 150, 150–186.CrossRefGoogle Scholar
  78. Lohmann, R., R. Gioia, K.C. Jones, L. Nizzetto, C. Temme, Z. Xie, D. Schulz-Bull, E. Morgan, and L. Jantunen, 2009: Organochlorine pesticides and PAHs in the surface water and atmosphere of the North Atlantic and Arctic Ocean. Environ. Sci. Technol. 43, 5633–5639.CrossRefGoogle Scholar
  79. Mackenzie, F.T. and A. Lerman, 2006: Carbon in the Geosphere – Earth’s Outer Shell, Springer, Dordrecht, The Netherlands, 402pp.Google Scholar
  80. Maldonado, C., J. Dachs, and J.M. Bayona, 1999: Trialkylamines and coprostanol as tracers of urban pollution in waters from enclosed seas: The Mediterranean and Black Sea. Environ. Sci. Technol. 33, 3290–3296.CrossRefGoogle Scholar
  81. MacIntyre, F., 1974: The top millimeter of the ocean. Sci. Am. 230, 62–69.CrossRefGoogle Scholar
  82. MacLeod, M., M. Scheringer, H. Podey, K.C. Jones, and K. Hungerbühler, 2007: The origin and significance of short-term variability of semi-volatile contaminants in air. Environ. Sci. Technol. 41, 3249–3253.CrossRefGoogle Scholar
  83. McLachlan, M.S. and M. Horstmann, 1998: Forests as filters of airborne organic pollutants: A model. Environ. Sci. Technol. 32, 413–420.CrossRefGoogle Scholar
  84. Melbye, A.G., O.G. Brakstad, J.N. Hokstad, I.K. Gregersen, B.H. Hansen, A.M. Booth, S.J. Rowland, and K.E. Tollefsen, 2009: Chemical and toxicological characterization of an unresolved complex mixture-rich biodegraded crude oil. Environ. Toxicol. Chem. 28, 1815–1824.CrossRefGoogle Scholar
  85. Muir, D.C.G. and P.H. Howard, 2006: Are there new persistent organic pollutants? A challenge for environmental chemists. Environ. Sci. Technol. 40, 7157–7166.CrossRefGoogle Scholar
  86. Nelson, E.D., L.L. McConnell, and J.E. Baker, 1998: Diffusive exchange of gaseous polycyclic aromatic hydrocarbons and polychlorinated biphenyls across the air–water interface of the Chesapeake Bay. Environ. Sci. Technol. 32, 912–919.CrossRefGoogle Scholar
  87. Niederer, C., R.P. Schwarzenbach, and K.-U. Goss, 2007: Elucidating differences in the sorption properties of 10 humic and fulvic acids for polar and nonpolar organic chemicals. Environ. Sci. Technol. 41, 6711–6717.CrossRefGoogle Scholar
  88. Nizzetto, L., R. Lohmann, R. Gioia, A. Jahnke, C. Temme, A. Di Guardo, and K.C. Jones, 2008: PAHs in air and seawater along a North-South Atlantic transect: Trends and controlling processes. Environ. Sci. Technol. 42, 1580–1585.CrossRefGoogle Scholar
  89. Panshin, S.Y. and R.A. Hites, 1994: Polychlorinated concentrations of polychlorinated biphenyls at Bermuda. Environ. Sci. Technol. 28, 2001–2007.CrossRefGoogle Scholar
  90. Pelletier, E., P. Sargian, J. Payet, and S. Demers, 2006: UV effects on aquatic and coastal ecosystems ecotoxicological effects of combined UVB and organic contaminants in coastal waters: A review. Photochem. Photobiol. 82, 981–993, doi: 2005-09-18-RA-688.CrossRefGoogle Scholar
  91. Petersen, D.G. and I. Dahllöf, 2007: Combined effects of Pyrene and UV-light on algae and bacteria in an Arctic sediment. Ecotoxicology 16, 371–377.CrossRefGoogle Scholar
  92. Pignatello, J.J. and B. Xing, 1996: Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 30, 1–11.CrossRefGoogle Scholar
  93. Pistochi, A. and R. Loos, 2009: A map of European emissions and concentrations of PFOS and PFOA. Environ. Sci. Technol. 43, 9237–9244.CrossRefGoogle Scholar
  94. Postigo, C., M.J. López de Alda, and D. Barceló, 2009: Drugs of abuse and their metabolites in the Ebro River basin: Occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation. Environ. Int. doi: 10.1016/j.envint.2009,10.004.Google Scholar
  95. Rowe, A., L.A. Totten, M. Xie, T.J. Fikslin, and S.J. Eisenreich, 2007: Air–water exchange of polychlorinated biphenyls in the Delware River. Environ. Sci. Technol. 41, 1152–1158CrossRefGoogle Scholar
  96. Rowland, S., P. Donkin, E. Smith, and E. Wraige, 2001: Aromatic hydrocarbon “humps” in the marine environment: unrecognized toxins? Environ. Sci. Technol. 35, 2640–2644.CrossRefGoogle Scholar
  97. Scheringer, M., F. Wegmann, K. Fenner, and K. Hungerbühler, 2000: Investigation of the cold condensation of persistent organic pollutants with a global multimedia fate model. Environ. Sci. Technol. 34, 1842–1850.CrossRefGoogle Scholar
  98. Schreitmuller, J. and K. Ballschmiter, 1994: Fresenius. J. Anal. Chem. 348, 226–239.CrossRefGoogle Scholar
  99. Schwarzenbach, R.P., P.M. Gschwend, and D.M. Imboden, 2003: Environmental Organic Chemistry, Willey, NJ.Google Scholar
  100. Seth, R., D. Mackay, and J. Muncke, 1999: Estimating the organic carbon partition coefficient and its variability for hydrophobic chemicals. Environ. Sci. Technol. 33, 2390–2394.CrossRefGoogle Scholar
  101. Sobek, A. and Ö. Gustafsson, 2004: Latitudinal fractionation of poly-chlorinated biphenyls in surface seawater along a 62° N–89° N transect from the Southern Norwegian Sea to the North Pole area, Environ. Sci. Technol. 38, 2746–2751.CrossRefGoogle Scholar
  102. Sobek, A., K. Olli, and Ö. Gustafsson, 2006: On the relative significance of bacteria for the distribution of polychlorinated biphenyls in Arctic Ocean surface waters. Environ. Sci. Technol. 40, 2586–2593.CrossRefGoogle Scholar
  103. Steffen, W., P.J. Crutzen, and J.R. McNeill, 2007: The anthropocene: Are humans now overwhelming the great forces of nature? Ambio 36, 614–621.CrossRefGoogle Scholar
  104. Stern, G.A., C.A. Halsall, L.A. Barrie, D.C.G. Muir, P. Fellin, B. Rosenberg, F. Ya. Rovinsky, E.Ya. Kononov, and B. Pastuhov, 1997: Polychlorinated biphenyls in Arctic air. 1. Temporal and spatial trends. 1992–1994. Environ. Sci. Technol. 31, 3619–3628.CrossRefGoogle Scholar
  105. Swackhamer, D.L. and R.S. Skoglund, 1991: The role of phytoplankton in the partitioning of hydrophobic organic contaminants in water. In: Baker, R. (Ed.), Organic Substances and Sediments in Water, Lewis publishers, Chelsea, MI, II: pp. 91–105.Google Scholar
  106. Swackhamer, D.L. and R.S. Skoglund, 1993: Bioaccumulation of PCBs by algae: Kinetics versus equilibrium. Environ. Toxicol. Chem. 12, 831.CrossRefGoogle Scholar
  107. Tittlemier, S.A., M. Simon, W.M. Jarman, J.E. Elliott, and R.J. Norstrom, 1999: Identification of a novel C10H6N2Br4Cl2 heterocyclic compound in seabird eggs. A bioaccumulating marine natural product? Environ. Sci. Technol. 33, 26–33.CrossRefGoogle Scholar
  108. Totten, L.A., P.A. Brunciak, C.L. Gigliotti, J. Dachs, T.R. Glenn, E.D. Nelson, and S.J. Eisenreich, 2001: Dynamic air–water exchange of polychlorinated biphenyls in the New York–New Jersey Harbor estuary. Environ. Sci. Technol. 35, 3834–3840.CrossRefGoogle Scholar
  109. Totten, L.A., S.J. Eisenreich, and P.A. Brunciak, 2002: Evidence for destruction of PCBs by the OH radical in urban atmospheres. Chemosphere 47, 735–746.CrossRefGoogle Scholar
  110. Totten, L.A., C.L. Gigliotti, D.A. Van Ry, J.H. Offenberg, E.D. Nelson, J. Dachs, J.R. Reinfelder, and S.J. Eisenreich, 2004: Atmospheric concentrations and deposition of polychlorinated biphenyls to the Hudson River Estuary. Environ. Sci. Technol. 38, 2568–2573.CrossRefGoogle Scholar
  111. UNECE, 1998: Protocol to the 1979 Convention on Long-Range Transboundary Air Pollution on Persistent Organic Pollutants, United Nations Economic Commission for Europe, Aarhus, Denmark.Google Scholar
  112. UNEP, 2001: Final Act of the Plenipotentiaries on the Stockholm Convention on Persistent organic Pollutants, United Nations environment program chemicals, Geneva, Switzerland, 445pp.Google Scholar
  113. Van Ry, D.A., J. Dachs, C.L. Gigliotti, P. Brunciak, E.D. Nelson, and S.J. Eisenreich, 2000: Atmospheric seasonal trends and environmental fate of alkylphenols in the Lower Hudson River estuary. Environ. Sci. Technol. 34, 2410–2417.CrossRefGoogle Scholar
  114. Ver, L.M.B., F.T. Mackenzie, and A. Lerman, 1999: Biogeochemical responses of the carbon cycle to natural and human perturbation: Past, present and future. Am. J. Sci. 299, 762–801.CrossRefGoogle Scholar
  115. Wallace, J.C. and R.A. Hites, 1996: Diurnal variations in atmospheric concentrations of polychlorinated biphenyls and endosulfan: Implications for sampling protocols. Environ. Sci. Technol. 30, 444–446.CrossRefGoogle Scholar
  116. Wallberg, P. and A. Andersson, 2000: Transfer of carbon and polychlorinated biphenyl through the pelagic microbial food web in a coastal ecosystem. Environ. Toxicol. Chem. 18, 1250–1257.Google Scholar
  117. Wania, F. and D. Mackay, 1996: Tracking the distribution of persistent organic pollutants. Environ. Sci. Technol. 30, 390A–396A.CrossRefGoogle Scholar
  118. Wania, F. and M.S. McLachlan, 2001: Estimating the influence of forests on the overall fate of semivolatile organic compounds using a multimedia fate model. Environ. Sci. Technol. 35, 582–590.CrossRefGoogle Scholar
  119. Wania, F., 2006: Potential of degradable organic chemicals for absolute and relative enrichment in the Arctic. Environ. Sci. Technol. 40, 569–577.CrossRefGoogle Scholar
  120. Wells, M.L. and E.D. Goldberg, 1992: Marine submicron particles. Mar. Chem. 40, 5–18.CrossRefGoogle Scholar
  121. Wigely, T.M.L. and D.S. Schimel, 2000: The Carbon Cycle, Cambridge University Press, Cambridge, UK, 292pp.CrossRefGoogle Scholar
  122. Wurl, O. and J.P. Obbard, 2004: A review of pollutants in the sea-surface microlayer (SML): A unique habitat for marine organisms. Mar. Pollut. Bull. 48, 1016–1030.CrossRefGoogle Scholar
  123. Xie, Z., S. Lakaschus, R. Ebinghaus, A. Caba, and W. Ruck, 2006: Atmospheric concentrations and air-sea exchanges of nonylphenol, tertiary octylphenol and nonylphenol monoethoxylate in the North Sea. Environ. Pollut. 142, 170–180.CrossRefGoogle Scholar
  124. Xing, B. and J.J. Pignatello, 1997: Dual-mode sorption of low-polarity compounds in glassy poly (vinyl chloride) and soil organic matter. Environ. Sci. Technol. 31, 792–799.CrossRefGoogle Scholar
  125. Yamamoto, T., Y. Noma, S.-I. Sakai, and Y. Shibata, 2007: Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol. Environ. Sci. Technol. 41, 5660–5665.CrossRefGoogle Scholar
  126. Yamashita, N., S. Taniyasu, G. Petrick, S. Wei, T. Gamo, P.K.S. Lam, and K. Kannan, 2008: Perfluorinated acids as novel chemical tracers of global circulation of ocean waters. Chemosphere 70, 1247–1255.CrossRefGoogle Scholar
  127. Yan, S., L.A. Rodenburg, J. Dachs, and S.J. Eisenreich, 2008: Seasonal air–water exchange fluxes of polychlorinated biphenyls in the Hudson River estuary. Environ. Pollut. 152, 443–452.CrossRefGoogle Scholar
  128. Zhang, L. and R. Lohmann, 2010: Cycling of PCBs and HCB in the surface ocean-lower atmosphere of the open pacific. Environ. Sci. Technol. 44(10):3832–3838.CrossRefGoogle Scholar
  129. Zhulidov, A.V., J.V. Headley, D.F. Pavlov, R.D. Robarts, L.G. Korotova, Y.Y. Vinnikov, and O.V. Zhulidova, 2000: Riverine fluxes of the persistent organochlorine pesticides hexachlorcyclohexane and DDT in the Russian Federation. Chemosphere 41, 829–841.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rosalinda Gioia
    • 1
  • Jordi Dachs
    • 2
  • Luca Nizzetto
    • 3
  • Naiara Berrojalbiz
    • 2
  • Cristóbal Galbán
    • 2
  • Sabino Del Vento
    • 1
  • Laurence Méjanelle
    • 4
  • Kevin C. Jones
    • 1
  1. 1.Centre for Chemicals Management, Lancaster Environment CentreLancaster UniversityLancasterUK
  2. 2.Department of Environmental ChemistryIIQAB-CSICBarcelonaSpain
  3. 3.Norwegian Institute for Air ResearchKjellerNorway
  4. 4.Laboratoire AragóUniversité Pierre et Marie CurieBanyuls sur MerFrance

Personalised recommendations