Advertisement

Speeding Up the Wide-Pipe: Secure and Fast Hashing

  • Mridul Nandi
  • Souradyuti Paul
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6498)

Abstract

In this paper we propose a new sequential mode of operation – the Fast wide pipe or FWP for short – to hash messages of arbitrary length. The mode is shown to be (1) preimage-resistance preserving, (2) collision-resistance-preserving and, most importantly, (3) indifferentiable from a random oracle up to \(\mathcal{O}(2^{n/2})\) compression function invocations. In addition, our rigorous investigation suggests that any variants of Joux’s multi-collision, Kelsey-Schneier 2nd preimage and Herding attack are also ineffective on this mode. This fact leads us to conjecture that the indifferentiability security bound of FWP can be extended beyond the birthday barrier. From the point of view of efficiency, this new mode, for example, is always faster than the Wide-pipe mode when both modes use an identical compression function. In particular, it is nearly twice as fast as the Wide-pipe for a reasonable selection of the input and output size of the compression function. We also compare the FWP with several other modes of operation.

Keywords

Hash Function Random Oracle Intermediate Input Compression Function Collision Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 299–314. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the Indifferentiability of the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bhattacharya, R., Mandal, A., Nandi, M.: Indifferentiability Characterization of Hash Functions and Optimal Bounds of Popular Domain Extensions. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 199–218. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Bhattacharyya, R., Mandal, A., Nandi, M.: NandiSecurity Analysis of the Mode of JH Hash Function. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 168–191. Springer, Heidelberg (2010)Google Scholar
  5. 5.
    Biham, E., Dunkelman, O.: A framework for iterative hash functions – HAIFA. In: Second NIST Cryptographic Hash Workshop 2006 (2006)Google Scholar
  6. 6.
    Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)zbMATHGoogle Scholar
  7. 7.
    Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård Revisited: How to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Damgård, I.: A Design Principle for Hash Functions. In: Brassard [6], pp. 416–427Google Scholar
  9. 9.
    Rivest, R. et al.: The MD6 Hash Function 16Google Scholar
  10. 10.
    Hirose, S., Park, J.H., Yun, A.: A Simple Variant of the Merkle-Damgård Scheme with a Permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 113–129. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Joux, A.: Multicollisions in Iterated Hash Functions: Application to Cascaded Constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less than 2n Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 474–490. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Klimov, A., Shamir, A.: New Cryptographic Primitives Based on Multiword T-Functions. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 1–15. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Merkle, R.C.: One Way Hash Functions and DES. In: Brassard [6], pp. 428–446Google Scholar
  18. 18.
    NIST. Secure hash standard. In: Federal Information Processing Standard, FIPS-180 (1993)Google Scholar
  19. 19.
    NIST. Secure hash standard. In: Federal Information Processing Standard, FIPS 180-1 (April 1995)Google Scholar
  20. 20.
    Rivest, R.: The MD4 message-digest algorithm. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991)Google Scholar
  21. 21.
    Rivest, R.: The MD5 message-digest algorithm. IETF RFC 1321 (1992)Google Scholar
  22. 22.
    Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Wu, H.: The JH Hash Function. In: The 1st SHA-3 Candidate ConferenceGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mridul Nandi
    • 1
  • Souradyuti Paul
    • 2
    • 3
  1. 1.C.R. Rao AIMSCS InstituteHyderabadIndia
  2. 2.National Institute of Standards and TechnologySecurity Technology GroupGaithersburgUSA
  3. 3.Dept. ESAT/COSICKatholieke Universiteit LeuvenLeuven-HeverleeBelgium

Personalised recommendations