A Novel Hybrid Adaptive Nonlinear Controller Using Gaussian Process Prior and Fuzzy Control

  • H. R. Jamalabadi
  • F. Boroomand
  • C. Lucas
  • A. Fereidunian
  • M. A. Zamani
  • H. Lesani
Conference paper

Abstract

Control of an unknown nonlinear time-varying plant has always been a great concern for control specialists, thus an appealing subject in this discipline. Many efforts have been dedicated to explore the various aspects of this problem. This research has led into introducing many new fields and methods. These methods can be categorized into two general classes as: data-driven and model-driven. Model driven methods in spite of having rigorous analytical basis are not employed as frequently as data-driven ones. On the other hand data-driven methods are suitable to be employed in nonlinear and dual controller design; however they are slightly unsuccessful in handling missing data, moreover these methods are in need of considerable amount of computation. This paper introduces a novel hybrid nonlinear controller which aggregates Gaussian Process Prior as a data-driven and a Fuzzy Controller as a model-driven method .This special structure brings model-driven and data-driven advantages altogether, thus naturally lead into a robust and adaptive controller. Since no prior knowledge of the plant is used to issue the control law, the proposed hybrid controller can also be regarded as a dual controller.

Keywords

Gaussian Process Prior Fuzzy Control Adaptive dual control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tao., G., Kokotovic, P.V.: Adaptive Control of Plants with Unknown Dead-Zones. IEEE Transactions on Automatic Control 39(1) (January 1994)Google Scholar
  2. 2.
    Cho, J., Lan, J., Principe, J.C., Motter, M.A.: modeling and Control of Unknown chaotic systems via multiple models. In: IEEE Workshop on Machine Learning for Signal Processing (2004)Google Scholar
  3. 3.
    Whidborne, J.F., Murad, G., Gu, D.-W., Postlethwaite, I.: Robust control of an unknown plant—the IFAC 93 benchmark. International Journal of Control, 1366-5820 61(3), 589–640 (1995)MATHCrossRefGoogle Scholar
  4. 4.
    Graebe, S.F.: Robust and adaptive control of an unknown plant: A benchmark of new format. Automatica 30(4), 567–575 (1994)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Sastry, S., Bodson, M.: Adaptive Control: Stability, Convergence, and Robustness. Prentice-Hall, Englewood Cliffs (1989-1994)Google Scholar
  6. 6.
    Wang, L.: model predictive control system design and implementation using MATlAB. Springer, HeidelbergGoogle Scholar
  7. 7.
    Ackermann, J.: Robust Control Communications and Control Engineering, 2nd edn., vol. XIII, p. 483, 321. Springer, illus, Heidelberg (2002)Google Scholar
  8. 8.
    Astrom, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley Longman Publishing Co., Inc., Boston (1994)Google Scholar
  9. 9.
    Johansen, T.A., Foss, B.A.: Identification of non-linear system structure and parameters using regime decomposition. Automatica 31, 321–326 (1995); Also in Preprints 10th IFAC Symposium on Identification and System Parameter Estimation, Copenhagen (SYSID 1994), Vol.1, pp.131-137 (1994)Google Scholar
  10. 10.
    Smith, M., Sbarbaro, D.: Nonlinear adaptive control using non-parametric Gaussian Process prior models. In: 15th Triennial World Congress of the International Federation of Automatic Control, Barcelona, Spain, 21-26 July (2002)Google Scholar
  11. 11.
    Klira, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic, Theory and Applications. Prentice Hall P R T, Englewood Cliffs (1995)Google Scholar
  12. 12.
    Wittenmark, B.: Adaptive Dual Control Methods: An Overview. In: 5th IFAC symposium on Adaptive Systems in Control and Signal Processing (1995)Google Scholar
  13. 13.
    Feldbaum, A.: Dual Control Theory I-IV. Automation Remote Control 21, 22, 874–880, 1033–1039, 1–12, 109–121 (1960)MathSciNetGoogle Scholar
  14. 14.
    Zhangab, H.-T., Lib, H.-X., Chenc, G.: Dual-mode predictive control algorithm for constrained Hammerstein systems. International Journal of Control 11(12), 1–17 (2008)Google Scholar
  15. 15.
    Král, L., Punčochář, I., DunÍk, J.: Functional Adaptive Controller for MIMO Systems withDynamic Structure of Neural Network. In: 10th International PhD Workshop on Systems and Control Young Generation Viewpoint Hlubok a nad Vltavou, September 22-26 (2009)Google Scholar
  16. 16.
    Yazdi, H.: Control and supervision of event-driven systems., Ph.D. Thesis, Department of Chemical Engineering, Technical University of Denmark (1997)Google Scholar
  17. 17.
    Wang, L.: A Course in Fuzzy Systems and Control, 424 pages. Prentice Hall, Englewood Cliffs (1997)MATHGoogle Scholar
  18. 18.
    : On curve fitting and optimal design for regression. Journal of the Royal Statistical Society B40, 1–42Google Scholar
  19. 19.
    O’Hagan, J.M., Bernardo, J.O., Berger, A.P.: Some Bayesian numerical analysis. In: Dawid, Smith, A.F.M. (eds.) Bayesian Statistics, pp. 345–363. Oxford University Press, OxfordGoogle Scholar
  20. 20.
    Williams, C.K.I.: Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In: Jordan, M.I. (ed.) Learning and Inferenceing Graphical Models, pp. 599–621. Kluwer, Dordrecht (1998)Google Scholar
  21. 21.
    Neal, R.M.: Bayesian Learning for Neural Networks. Springer, New York (1996)Google Scholar
  22. 22.
    Williams, C.K.I., Rasmussen, C.E.: Gaussian process for regression. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Information Processing Systems, 8th edn., pp. 111–116. MIT Press, Cambridge (1996)Google Scholar
  23. 23.
    Gibbs, M.N.: ”Bayesian Gaussian Processes for Regression and Classification”,PhD thesis, Department of Physics, University of Cambridge (1997)Google Scholar
  24. 24.
    Thomas Miller III, W., Sutton, R.S., Werbos, P.J.: Neural Networks for Control, p. 542. Short, MIT Press, Cambridge (1991)MATHGoogle Scholar
  25. 25.
    Fyfe, C., Wang, T., Chuang, S.: Comparing Gaussian Processes and Artificial Neural Networks for Forecasting. JCIS (2006)Google Scholar
  26. 26.
    Kocijan, J., Smith, R., Edward Rasmussen, C., Likar, B.: Predictive control with Gaussian process models. In: The IEEE Region 8 EUROCON 2003: Computer as a Tool: Proceedings, pp. 22–24.Google Scholar
  27. 27.
    Kocijan, J., Murray-Smith, R., Rasmussen, C.E., Girard, A.: Gaussian process model based predictive control. In: American Control Conference, June 30 - July 2, Boston, Massachusetts (2004)Google Scholar
  28. 28.
    Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006)MATHGoogle Scholar
  29. 29.
    Daimler-Benz: Neuro Control Towards An Industrial Control Methodology. Wiley, Chichester (1997)Google Scholar
  30. 30.
    Akhavan, E., Haghifam, M.R., Fereidunian, A.: Data-Driven Reliability Modeling, Based on Data Mining in Distribution Network Fault Statistics. In: Proc. Of the IEEE PowerTech, Bucharest, Romania (July/June 2009)Google Scholar
  31. 31.
    Haghifam, M.R., Akhavan, E., Fereidunian, A.: Failure Rate Modeling: A Data Mining Approach, Using MV Network Field Data. In: Proceedings of the IEEE Canada EPEC 2009, Montreal, Quebec, Canada, October 22-23 (2009)Google Scholar
  32. 32.
    Mitezenmatcher, M., Upfal, E.: Probability and Computing. Cambridge University Press, Cambridge (2000)Google Scholar
  33. 33.
    Wang, C.-H., Liu, H.-L., Lin, T.-C.: Direct Adaptive Fuzzy-Neural Control With State Observer and Supervisory Controller for Unknown Nonlinear Dynamical Systems. IEEE Transactions on Fuzzy Systems 10(1) (February 2002)Google Scholar
  34. 34.
    Sastry, S., Isidori, A.: Adaptive control of linearization systems. IEEE Trans. Automat. Contr. 34, 1123–1131 (1989)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Marino, R., Tomei, P.: Globally adaptive output-feedback control on nonlinear systems, part I: Linear parameterization. IEEE Trans. Automat. Contr. 38, 17–32 (1993)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    : Globally adaptive output-feedback control on nonlinear systems, part II: Nonlinear parameterization. IEEE Trans. Automat. Contr. 38, 33–48 (1993)Google Scholar
  37. 37.
    Johnstone, Function Estimation and Gaussian Sequence Models, Department of Statistics, Stanford University (2002)Google Scholar
  38. 38.
    Philips, Yu, Exact Gaussian Estimation of Continuous Time Models of The Term Structure of Interest Rates. Yale University, Department of Economics (2000)Google Scholar
  39. 39.
    Zhao, Tomizuka, & Isaka 1993. Z.Y. Zhao, M. Tomizuka and S. Isaka , Fuzzy gain scheduling of PID controllers. IEEE Transactions on Systems, Man and Cybernetics 23 5 (1993), pp. 1211–1219. Google Scholar
  40. 40.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst., Man, Cybernetics SMC-15(1), 116–132 (1985)Google Scholar
  41. 41.
    Rice, J.: Mathematical Statistics and Data Analysis, 2nd edn. Duxbury Press (1995); ISBN 0-534-20934-3Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • H. R. Jamalabadi
    • 1
  • F. Boroomand
    • 1
  • C. Lucas
    • 1
  • A. Fereidunian
    • 1
  • M. A. Zamani
    • 1
  • H. Lesani
    • 1
  1. 1.University of TehranIran

Personalised recommendations