Conditional Differential Cryptanalysis of NLFSR-Based Cryptosystems

  • Simon Knellwolf
  • Willi Meier
  • María Naya-Plasencia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6477)

Abstract

Non-linear feedback shift registers are widely used in lightweight cryptographic primitives. For such constructions we propose a general analysis technique based on differential cryptanalysis. The essential idea is to identify conditions on the internal state to obtain a deterministic differential characteristic for a large number of rounds. Depending on whether these conditions involve public variables only, or also key variables, we derive distinguishing and partial key recovery attacks. We apply these methods to analyse the security of the eSTREAM finalist Grain v1 as well as the block cipher family KATAN/KTANTAN. This allows us to distinguish Grain v1 reduced to 104 of its 160 rounds and to recover some information on the key. The technique naturally extends to higher order differentials and enables us to distinguish Grain-128 up to 215 of its 256 rounds and to recover parts of the key up to 213 rounds. All results are the best known thus far and are achieved by experiments in practical time.

Keywords

differential cryptanalysis NLFSR distinguishing attack key recovery Grain KATAN/KTANTAN 

References

  1. 1.
    Aumasson, J.P., Dinur, I., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA Implementations of High-Dimensional Cube Testers on the Stream Cipher Grain-128. In: SHARCS (2009)Google Scholar
  2. 2.
    Aumasson, J.P., Dinur, I., Meier, W., Shamir, A.: Cube Testers and Key Recovery Attacks on Reduced-Round MD6 and Trivium. In: Dunkelman, O. (ed.) Fast Software Encryption. LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Biham, E., Dunkelman, O.: Differential Cryptanalysis in Stream Ciphers. Cryptology ePrint Archive, Report 2007/218 (2007), http://eprint.iacr.org/
  4. 4.
    Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991)Google Scholar
  5. 5.
    Cannière, C.D.: Trivium: A Stream Cipher Construction Inspired by Block Cipher Design Principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Cannière, C.D., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - A Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Cannière, C.D., Küçük, Ö., Preneel, B.: Analysis of Grain’s Initialization Algorithm. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 276–289. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg (2010)Google Scholar
  9. 9.
    ECRYPT: The eSTREAM project, http://www.ecrypt.eu.org/stream/
  10. 10.
    Englund, H., Johansson, T., Turan, M.S.: A Framework for Chosen IV Statistical Analysis of Stream Ciphers. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 268–281. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Fischer, S., Khazaei, S., Meier, W.: Chosen IV Statistical Analysis for Key Recovery Attacks on Stream Ciphers. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 236–245. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Hell, M., Johansson, T., Maximov, A., Meier, W.: A Stream Cipher Proposal: Grain-128. In: ISIT, pp. 1614–1618 (2006)Google Scholar
  13. 13.
    Hell, M., Johansson, T., Meier, W.: Grain: A Stream Cipher for Constrained Environments. IJWMC 2(1), 86–93 (2007)CrossRefGoogle Scholar
  14. 14.
    Khazaei, S., Meier, W.: New Directions in Cryptanalysis of Self-Synchronizing Stream Ciphers. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 15–26. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)Google Scholar
  16. 16.
    Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E., Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Communicationis and Cryptography: Two Sides of one Tapestry, pp. 227–233. Kluwer Academic Publishers, Dordrecht (1994)Google Scholar
  17. 17.
    Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Wu, H., Preneel, B.: Resynchronization Attacks on WG and LEX. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 422–432. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2010

Authors and Affiliations

  • Simon Knellwolf
    • 1
  • Willi Meier
    • 1
  • María Naya-Plasencia
    • 1
  1. 1.FHNWSwitzerland

Personalised recommendations