General Perfectly Secure Message Transmission Using Linear Codes

  • Qiushi Yang
  • Yvo Desmedt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6477)

Abstract

We study perfectly secure message transmission (PSMT) from a sender S to a receiver R in the general adversary model. In this model, instead of being bounded by a threshold, the Byzantine adversary in a network is characterized by an adversary structure. By regarding monotone general access structures as linear codes, we introduce some new properties that allow us to design efficient PSMT protocols. We give a number of efficient PSMT protocols in both undirected and directed network graphs. These protocols comprehensively improve the transmission complexity of some previous results in this area. More significantly, as all of our protocols are executed in either 3 or 2 rounds, our result is the first, in the context of PSMT in the general adversary model, to have constant round complexity when using interaction.

Keywords

perfectly secure message transmission adversary structure linear codes transmission complexity round complexity 

References

  1. 1.
    The full version of this paper will be available on the authors’ web pagesGoogle Scholar
  2. 2.
    Agarwal, S., Cramer, R., de Hann, R.: Asymptotically optimal two-round perfectly secure message transmission. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 394–408. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1990)Google Scholar
  4. 4.
    Blundo, C., De Santis, A., De Simone, R., Vaccaro, U.: Tight bounds on the information rate of secret sharing schemes. Des. Codes Cryptography 11(2), 107–122 (1997)MATHCrossRefGoogle Scholar
  5. 5.
    Cramer, R., Damgård, I., Maurer, U.M.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Csirmaz, L.: The size of a share must be large. J. Cryptography 10(4), 223–231 (1997); A Preliminary version published in 1995.MATHMathSciNetGoogle Scholar
  7. 7.
    Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Desmedt, Y., Wang, Y., Burmester, M.: A complete characterization of tolerable adversary structures for secure point-to-point transmissions without feedback. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 277–287. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. J. ACM 40(1), 17–47 (1993)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Frankel, Y., Desmedt, Y.: Classification of ideal homomorphic threshold schemes over finite Abelian groups. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 25–34. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  11. 11.
    Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in perfect multiparty computation. J. Cryptology 13(1), 31–60 (2000)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. In: Proc. IEEE Globecom 1987, pp. 99–102 (1987)Google Scholar
  13. 13.
    Karchmer, M., Wigderson, A.: On span programs. In: Proc. IEEE Structure in Complexity Theory, pp. 102–111 (1993)Google Scholar
  14. 14.
    Kumar, M., Goundan, P., Srinathan, K., Rangan, C.P.: On perfectly secure communication over arbitrary networks. In: Proc. ACM PODC 2002, pp. 293–202 (2002)Google Scholar
  15. 15.
    Kurosawa, K., Suzuki, K.: Truly efficient 2-round perfectly secure message transmission scheme. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 324–340. Springer, Heidelberg (2008); Also available in IEEE Transaction on Information Theory, 55(11)5223–5232 (2009)CrossRefGoogle Scholar
  16. 16.
    MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-Holland Publishing Company, Amsterdam (1978)Google Scholar
  17. 17.
    Patra, A., Choudhary, A., Rangan, C.P.: On communication complexity of secure message transmission in directed networks. In: Proc. ICDCN 2010. LNCS, vol. 5935, pp. 42–53 (2010)Google Scholar
  18. 18.
    Patra, A., Cloudhary, A., Rangan, C.P.: Brief announcement: perfectly secure message transmission in directed networks re-visited. In: Proc. ACM PODC 2009, pp. 278–279 (2009)Google Scholar
  19. 19.
    Patra, A., Shankar, B., Choudhary, A., Srinathan, K., Rangan, C.P.: Perfectly secure message transmission in directed networks tolerating threshold and non threshold adversary. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.) CANS 2007. LNCS, vol. 4856, pp. 80–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Shamir, A.: How to share a secret. ACM Commun. 22(11), 612–613 (1979)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Simmons, G.J., Jackson, W., Martin, K.: The geometry of shared secret schemes. Bulletin of the Institute of Combinatorics and its Applications 1(1), 71–88 (1991)MATHMathSciNetGoogle Scholar
  22. 22.
    Srinathan, K., Narayanan, A., Rangan, C.P.: Optimal perfectly secure message transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561. Springer, Heidelberg (2004)Google Scholar
  23. 23.
    van Dijk, M.: On the information rate of perfect secret sharing schemes. Des. Codes Cryptography 6(2), 143–169 (1995)MATHCrossRefGoogle Scholar
  24. 24.
    Yang, Q., Desmedt, Y.: Cryptanalysis of secure message transmission protocols with feedback. In: Kurosawa, K. (ed.) Information Theoretic Security. LNCS, vol. 5973, pp. 159–176. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2010

Authors and Affiliations

  • Qiushi Yang
    • 1
  • Yvo Desmedt
    • 1
  1. 1.Department of Computer ScienceUniversity College LondonUK

Personalised recommendations