Abstract

Blind signatures (BS), introduced by Chaum, have become a cornerstone in privacy-oriented cryptography. Using hard lattice problems, such as the shortest vector problem, as the basis of security has advantages over using the factoring or discrete logarithm problems. For instance, lattice operations are more efficient than modular exponentiation and lattice problems remain hard for quantum and subexponential-time adversaries. Generally speaking, BS allow a signer to sign a message without seeing it, while retaining a certain amount of control over the process. In particular, the signer can control the number of issued signatures. For the receiver of the signature, this process provides perfect anonymity, e.g., his spendings remain anonymous when using BS for electronic money.

We provide a positive answer to the question of whether it is possible to implement BS based on lattice problems. More precisely, we show how to turn Lyubashevsky’s identification scheme into a BS scheme, which has almost the same efficiency and security in the random oracle model. In particular, it offers quasi-linear complexity, statistical blindness, and its unforgeability is based on the hardness of worst-case lattice problems with an approximation factor of \(\widetilde{O}(n^{5})\) in dimension n. Moreover, it is the first blind signature scheme that supports leakage-resilience, tolerating leakage of a (1-o(1)) fraction of the secret key in a model that is inspired by Katz and Vaikuntanathan.

Keywords

Blind signatures post-quantum lattices provable security leakage resilience 

References

  1. [Abe01]
    Abe, M.: A secure three-move blind signature scheme for polynomially many signatures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. [ADL+08]
    Arbitman, Y., Dogon, G., Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFTX: A proposal for the SHA-3 standard. In: The First SHA-3 Candidate Conference (2008)Google Scholar
  3. [ADW09]
    Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-retrieval model. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. [Ajt96]
    Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC, pp. 99–108. ACM, New York (1996)Google Scholar
  5. [AKS01]
    Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: STOC, pp. 601–610. ACM, New York (2001)Google Scholar
  6. [ANN06]
    Abdalla, M., Namprempre, C., Neven, G.: On the (im)possibility of blind message authentication codes. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 262–279. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. [BMV08]
    Bresson, E., Monnerat, J., Vergnaud, D.: Separation results on the ”one-more” computational problems. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 71–87. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. [BN06]
    Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM Conference on Computer and Communications Security, pp. 390–399. ACM, New York (2006)Google Scholar
  9. [BNPS03]
    Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-rsa-inversion problems and the security of chaum’s blind signature scheme. J. Cryptology 16(3), 185–215 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. [Bol03]
    Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. [BR93]
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: CCS. ACM, New York (1993)Google Scholar
  12. [Cha82]
    Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO, pp. 199–203 (1982)Google Scholar
  13. [CKW04]
    Camenisch, J., Koprowski, M., Warinschi, B.: Efficient blind signatures without random oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 134–148. Springer, Heidelberg (2005)Google Scholar
  14. [CNS07]
    Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. [ECR10]
    ECRYPT2. Yearly report on algorithms and keysizes — report D.SPA.13 (2010), http://www.ecrypt.eu.org/documents/D.SPA.13.pdf
  16. [FS86]
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  17. [FS09]
    Fischlin, M., Schröder, D.: Security of blind signatures under aborts. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 297–316. Springer, Heidelberg (2009)Google Scholar
  18. [Gol04]
    Goldreich, O.: The Foundations of Cryptography, vol. 1. Cambridge University Press, Cambridge (2004)Google Scholar
  19. [GPV08]
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) STOC, pp. 197–206. ACM, New York (2008)Google Scholar
  20. [JLO97]
    Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures (extended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)Google Scholar
  21. [KTX08]
    Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. [KV09]
    Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. [Len05]
    Lenstra, A.: The Handbook of Information Security. Key Lengths, ch. 14. Wiley, Chichester (2005), http://www.keylength.com/biblio/Handbook_of_Information_Security_-_Keylength.pdf Google Scholar
  24. [LM06]
    Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. [Lyu08]
    Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. [Lyu09]
    Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. [Mat09]
    Matsui, M. (ed.): ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (2009)MATHGoogle Scholar
  28. [Oka92]
    Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)Google Scholar
  29. [Oka06]
    Okamoto, T.: Efficient blind and partially blind signatures without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. [Poi98]
    Pointcheval, D.: Strengthened security for blind signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 391–405. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  31. [PS97]
    Pointcheval, D., Stern, J.: New blind signatures equivalent to factorization (extended abstract). In: ACM Conference on Computer and Communications Security, pp. 92–99 (1997)Google Scholar
  32. [PS00]
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptology 13(3), 361–396 (2000)MATHCrossRefGoogle Scholar
  33. [RHOAGZ07]
    Rodríguez-Henríquez, F., Ortiz-Arroyo, D., García-Zamora, C.: Yet another improvement over the mu-varadharajan e-voting protocol. Comput. Stand. Interfaces 29(4), 471–480 (2007)CrossRefGoogle Scholar
  34. [RS10]
    Rückert, M., Schneider, M.: Selecting secure parameters for lattice-based cryptography. Cryptology ePrint Archive, Report 2010/137 (2010), http://eprint.iacr.org/
  35. [Rüc08]
    Rückert, M.: Lattice-based blind signatures. Cryptology ePrint Archive, Report 2008/322 (2008), http://eprint.iacr.org/
  36. [Rüc10]
    Rückert, M.: Adaptively secure identity-based identification from lattices without random oracles. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 345–362. Springer, Heidelberg (2010), http://dblp.uni-trier.de/rec/bibtex/conf/scn/Ruckert10 CrossRefGoogle Scholar
  37. [Sch91]
    Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4, 161–174 (1991)MATHCrossRefMathSciNetGoogle Scholar
  38. [Sho97]
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2010

Authors and Affiliations

  • Markus Rückert
    • 1
  1. 1.Department of Computer Science Cryptography and ComputeralgebraTechnische Universität DarmstadtGermany

Personalised recommendations