Model Synchronization at Work: Keeping SysML and AUTOSAR Models Consistent

  • Holger Giese
  • Stephan Hildebrandt
  • Stefan Neumann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5765)

Abstract

During the overall development of complex engineering systems different modeling notations are employed. For example, in the domain of automotive systems system engineering models are employed quite early to capture the requirements and basic structuring of the entire system, while software engineering models are used later on to describe the concrete software architecture. Each model helps in addressing the specific design issue with appropriate notations and at a suitable level of abstraction. However, when we step forward from system design to the software design, the engineers have to ensure that all decisions captured in the system design model are correctly transferred to the software engineering model. Even worse, when changes occur later on in either model, today the consistency has to be reestablished in a cumbersome manual step. In this paper, we present how model synchronization and consistency rules can be applied to automate this task and ensure that the different models are kept consistent. We also introduce a general approach for model synchronization. Besides synchronization, the approach consists of tool adapters as well as consistency rules covering the overlap between the synchronized parts of a model and the rest. We present the model synchronization algorithm based on triple graph grammars in detail and further exemplify the general approach by means of a model synchronization solution between system engineering models in SysML and software engineering models in AUTOSAR which has been developed for an industrial partner.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Systems Modeling Language v. 1.1 (November 2008), http://www.sysml.org
  2. 2.
    Aldazabal, A., Baily, T., Nanclares, F., Sadovykh, A., Hein, C., Ritter, T.: Automated model driven development processes (2008)Google Scholar
  3. 3.
    AUTOSAR: UML Profile for AUTOSAR (January 2007), aUTOSAR GbRGoogle Scholar
  4. 4.
    Becker, S., Herold, S., Lohmann, S., Westfechtel, B.: A graph-based algorithm for consistency maintenance in incremental and interactive integration tools. Software and Systems Modeling (SoSyM) 6(3), 287–315 (2007), http://dx.doi.org/10.1007/s10270-006-0045-5 CrossRefGoogle Scholar
  5. 5.
    Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern matching in the viatra model transformation system. In: GRaMoT 2008: Proceedings of the Third International Workshop on Graph and Model Transformations, pp. 25–32. ACM, New York (2008)CrossRefGoogle Scholar
  6. 6.
    Borland Together Architect, http://www.borland.com/
  7. 7.
    Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J.P., Wagner, R., Wendehals, L., Zündorf, A.: Tool Integration at the Meta-Model Level within the FUJABA Tool Suite. International Journal on Software Tools for Technology Transfer (STTT) 6(3), 203–218 (2004), http://www.upb.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/2004/STTT-BGN+04.pdf CrossRefGoogle Scholar
  8. 8.
    Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varró, D.: VIATRA: Visual Automated Transformations for Formal Verification and Validation of UML Models. In: Richardson, J., Emmerich, W., Wile, D. (eds.) Proc. ASE 2002: 17th IEEE International Conference on Automated Software Engineering, September 23, pp. 267–270. IEEE Press, Edinburgh (2002)CrossRefGoogle Scholar
  9. 9.
    Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM System Journal 45(3) (July 2006)Google Scholar
  10. 10.
    Darmstadt, T.U.: Moflon (2007), http://www.moflon.org
  11. 11.
    Egyed, A.: Fixing Inconsistencies in UML Design Models. In: Proceedings of the 29th International Conference on Software Engineering (ICSE), Minneapolis, MN, USA, pp. 292–301. IEEE Computer Society, Los Alamitos (May 2007)CrossRefGoogle Scholar
  12. 12.
    Ermel, C., Rudolf, M., Taentzer, G.: The AGG Approach: Language and Environment. In: Handbook of Graph Grammars and Computing by Graph Transformation: Applications, Languages, and Tools, vol. 2. World Scientific Publishing, Singapore (1999)Google Scholar
  13. 13.
    Finkelstein, A.: A Foolish Consistency: Technical Challenges in Consistency Management. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 1–5. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new Graph Rewrite Language based on the Unified Modeling Language. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–309. Springer, Heidelberg (2000), http://www.upb.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/1998/TAGT1998.pdf CrossRefGoogle Scholar
  15. 15.
    France Telecom: SmartQVT, http://smartqvt.elibel.tm.fr/
  16. 16.
    Gardner, T., Griffin, C., Koehler, J., Hauser, R.: Review of OMG MOF 2.0 Query/Views/Transformations Submissions and Recommendations towards final Standard. OMG, 250 First Avenue, Needham, MA 02494, USA (2003), http://www.omg.org/docs/ad/03-08-02.pdf
  17. 17.
    Giese, H., Hildebrandt, S., Neumann, S.: Towards Integrating SysML and AUTOSAR Modeling via Bidirectional Model Synchronization. In: 5th Workshop on Model-Based Development of Embedded Systems (MBEES) (2009)Google Scholar
  18. 18.
    Giese, H., Hildebrandt, S., Seibel, A.: Improved Flexibility and Scalability by Interpreting Story Diagrams. In: Magaria, T., Padberg, J., Taentzer, G. (eds.) Proceedings of the Eighth International Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT 2009) (2009)Google Scholar
  19. 19.
    Giese, H., Wagner, R.: From model transformation to incremental bidirectional model synchronization. Software and Systems Modeling 8(1) (February 1, 2009), http://www.springerlink.com/content/j716245824112n27/
  20. 20.
    Guerra, E., de Lara, J.: Event-Driven Grammars: Towards the Integration of Meta-Modelling and Graph Transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 54–69. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    ikv++ technologies ag: medini QVT (2007), http://www.ikv.de
  22. 22.
    Johnson, T., Paredis, C., Burkhart, R.: Integrating Models and Simulations of Continuous Dynamics into SysML (2008)Google Scholar
  23. 23.
    Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002. LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Kindler, E., Rubin, V., Wagner, R.: An Adaptable TGG Interpreter for In-Memory Model Transformation. In: Proc. of the Fujaba Days 2004, Darmstadt, Germany, pp. 35–38 (September 2004)Google Scholar
  25. 25.
    Marschall, F., Braun, P.: Model Transformations for the MDA with BOTL. In: Proceedings of the Workshop on Model Driven Architecture: Foundations and Applications. Technical Report TR-CTIT-03-27, Univeristy of Twente (June 2003)Google Scholar
  26. 26.
    Object Management Group: Meta Object Facility (MOF) 2.0 Core Specification (January 2006), document ptc/06-11-01Google Scholar
  27. 27.
    OMG, O.M.G.: Object Constraint Language (May 2006), http://www.omg.org/spec/OCL/2.0/PDF
  28. 28.
    Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES Approach: Language and Environment. In: Handbook of Graph Grammars and Computing by Graph Transformation: Applications, Languages, and Tools, vol. 2, pp. 487–550. World Scientific Publishing Co., Inc., River Edge (1999)CrossRefGoogle Scholar
  29. 29.
    Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  30. 30.
    Stürmer, I., Kreuz, I., Schäfer, W., Schürr, A.: Enhanced Simulink Stateflow Model Transformation: The MATE Approach. In: Proc. of MathWorks Automotive Conference (MAC 2007). Dearborn (MI), USA (2007)Google Scholar
  31. 31.
    Tata Consultancy Services: ModelMorf (2007), http://www.tcs-trddc.com/ModelMorf/index.htm
  32. 32.
    University of Paderborn. Fujaba Tool Suite, Germany, http://www.fujaba.de/
  33. 33.
    Varró, D., Varró, G., Pataricza, A.: Designing the Automatic Transformation of Visual Languages. Science of Computer Programming 44(2), 205–227 (2002)CrossRefMATHGoogle Scholar
  34. 34.
    Vizhanyo, A., Agrawal, A., Shi, F.: Towards Generation of Efficient Transformations. In: Karsai, G., Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286, pp. 298–316. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  35. 35.
    Windpassinger, H.: Modellierungssprache für die Kfz-Software Entwicklung. Elektronik Praxis (2007), http://www.elektronikpraxis.vogel.de/themen/embeddedsoftwareengineering/analyseentwurf/articles/95528/

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Holger Giese
    • 1
  • Stephan Hildebrandt
    • 1
  • Stefan Neumann
    • 1
  1. 1.Hasso Plattner Institute for Software Systems EngineeringPotsdamGermany

Personalised recommendations