Advertisement

Dynamic Modeling of the 4 DoF BioRob Series Elastic Robot Arm for Simulation and Control

  • Thomas Lens
  • Jürgen Kunz
  • Oskar von Stryk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6472)

Abstract

This paper presents the modeling of the light-weight BioRob robot arm with series elastic actuation for simulation and controller design. We describe the kinematic coupling introduced by the cable actuation and the robot arm dynamics including the elastic actuator and motor and gear model. We show how the inverse dynamics model derived from these equations can be used as a basis for a position tracking controller that is able to sufficiently damp the oscillations caused by the high, nonlinear joint elasticity. We presents results from simulation and briefly describe the implementation for a real world application.

Keywords

flexible joint robot modeling control biologically inspired robotics series elastic actuation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albu-Schäffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. International Journal of Robotics Research 26(1), 23–39 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    BioRob project website, http://www.biorob.de
  3. 3.
    De Luca, A.: Feedforward/feedback laws for the control of flexible robots. In: Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA), vol. 1, pp. 233–240 (2000)Google Scholar
  4. 4.
    De Luca, A., Book, W.: Robots with Flexible Elements. In: Springer Handbook of Robotics, pp. 287–319. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    De Luca, A., Siciliano, B., Zollo, L.: PD control with on-line gravity compensation for robots with elastic joints: Theory and experiments. Automatica 41(10), 1809–1819 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mechanism and Machine Theory 41(7), 749–777 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Höpler, R., Thümmel, M.: Symbolic computation of the inverse dynamics of elastic joint robots. In: Proc. IEEE Intl. Conf. on Robotics and Automation, ICRA (2004)Google Scholar
  8. 8.
    Klute, G.K., Czerniecki, J.M., Hannaford, B.: Artificial muscles: Actuators for biorobotic systems. International Journal of Robotics Research 21(4), 295–309 (2002)CrossRefGoogle Scholar
  9. 9.
    Lens, T., Kunz, J., Trommer, C., Karguth, A., von Stryk, O.: Biorob-arm: A quickly deployable and intrinsically safe, light-weight robot arm for service robotics applications. In: Proc. 41st International Symposium on Robotics (ISR)/6th German Conference on Robotics, ROBOTIK (2010)Google Scholar
  10. 10.
    Marino, R., Nicosia, S.: On the feedback control of industrial robots with elastic joints: A singular perturbation approach. Tech. Rep. R-84.01, University of Rome (1984)Google Scholar
  11. 11.
    Möhl, B.: Bionic robot arm with compliant actuators. In: Proc. Sensor Fusion and Decentralized Control in Robotic Systems III (SPIE), pp. 82–85 (2000)Google Scholar
  12. 12.
    Murphy, S., Wen, J., Saridis, G.: Simulation and analysis of flexibly jointed manipulators. In: Proc. 29th IEEE Conf. on Decision and Control, vol. 2, pp. 545–550 (1990)Google Scholar
  13. 13.
    Pratt, G., Williamson, M.: Series elastic actuators. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, vol. 1, p. 399 (1995)Google Scholar
  14. 14.
    Spong, M.W.: Modeling and control of elastic joint robots. Journal of Dynamic Systems, Measurement, and Control 109(4), 310–318 (1987)CrossRefzbMATHGoogle Scholar
  15. 15.
    Tomei, P.: An observer for flexible joint robots. IEEE Transactions on Automatic Control 35(6), 739–743 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tomei, P.: A simple pd controller for robots with elastic joints. IEEE Transactions on Automatic Control 36(10), 1208–1213 (1991)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Van Ham, R., Sugar, T., Vanderborght, B., Hollander, K., Lefeber, D.: Compliant actuator designs. IEEE Robotics & Automation Magazine 16(3), 81–94 (2009)CrossRefGoogle Scholar
  18. 18.
    Wolf, S., Hirzinger, G.: A new variable stiffness design: Matching requirements of the next robot generation. In: Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA), pp. 1741–1746 (2008)Google Scholar
  19. 19.
    Zinn, M., Khatib, O., Roth, B., Salisbury, J.: A new actuation approach for human-friendly robot design. International Journal of Robotics Research 23(4/5), 379–398 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thomas Lens
    • 1
  • Jürgen Kunz
    • 1
  • Oskar von Stryk
    • 1
  1. 1.Simulation, Systems Optimization and Robotics GroupTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations