Advertisement

Validating an Active Stereo System Using USARSim

  • Sebastian Drews
  • Sven Lange
  • Peter Protzel
Conference paper
  • 2.9k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6472)

Abstract

We present our ongoing work on autonomous quadrotor UAV navigation using an active vision sensor. We motivate the usage of the active vision sensor instead of standard laser range finders and present the underlying technical and theoretical mechanisms. Initial results on ICP based SLAM obtained with a prototype of this sensor, give rise to a deeper analysis of the active vision sensor in a simulation environment. Therefore, the sensor model is integrated in USARSim. Adaption of the sensor model and results on the active vision SLAM algorithm in the idealized environment are discussed and consequences for the real world application are inferred.

Keywords

Laser Line Sensor Model Camera Frame Calibration Pattern Omnidirectional Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achtelik, M., Bachrach, A., He, R., Prentice, S., Roy, N.: Autonomous Navigation and Exploration of a Quadrotor Helicopter in GPS-denied Indoor Environments. In: First Symposium on Indoor Flight Issues (2009)Google Scholar
  2. 2.
    Blanco, J.-L.: The Mobile Robot Programming Toolkit (MRPT) (April 2010), http://www.mrpt.org
  3. 3.
    Bouguet, J.-Y.: Camera Calibration Toolbox for Matlab. Website (2009), http://vision.caltech.edu/bouguetj/calib_doc
  4. 4.
    Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrappertow, C.: USARSim: a robot simulator for research and education. In: Proc. of IEEE International Conference on Robotics and Automation, ICRA 2007, Roma, Italy, pp. 1400–1405 (April 2007)Google Scholar
  5. 5.
    Grzonka, S., Grisetti, G., Burgard, W.: Towards a Navigation System for Autonomous Indoor Flying. In: Proc. of IEEE International Conference on Robotics and Automation, ICRA 2009, Kobe, Japan (2009)Google Scholar
  6. 6.
    Gurdan, D., Stumpf, J., Achtelik, M., Doth, K.-M., Hirzinger, G., Rus, D.: Energy-efficient Autonomous Four-rotor Flying Robot Controlled at 1 kHz. In: Proc. of IEEE International Conference on Robotics and Automation, ICRA 2007, Rome, Italy (April 2007)Google Scholar
  7. 7.
    He, R., Prentice, S., Roy, N.: Planning in Information Space for a Quadrotor Helicopter in a GPS-denied Environments. In: Proc. of the IEEE International Conference on Robotics and Automation, ICRA 2008, Los Angeles, CA, pp. 1814–1820 (2008)Google Scholar
  8. 8.
    Ilstrup, D., Elkaim, G.H.: Low Cost, Low Power Structured Light Based Obstacle Detection. In: ION/IEEE Position, Location, and Navigation Symposium, ION/IEEE PLANS 2008, Monterey, CA, pp. 865–870 (2008)Google Scholar
  9. 9.
    Ilstrup, D., Elkaim, G.H.: Single Frame Processing for Structured Light Based Obstacle Detection. In: ION National Technical Meeting, ION NTM 2008, San Diego, CA (2008)Google Scholar
  10. 10.
    Jiang, X., Bunke, H.: Dreidimensionales Computersehen - Gewinnung und Analyse von Tiefenbildern. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  11. 11.
    Lange, S., Sünderhauf, N., Protzel, P.: A Vision Based Onboard Approach for Landing and Position Control of an Autonomous Multirotor UAV in GPS-Denied Environments. In: Proc. of the International Conference on Advanced Robotics, ICAR 2009, Munich, Germany (2009)Google Scholar
  12. 12.
    Caprari, G., Kneip, L., Tache, F., Siegwart, R.: Characterization of the compact Hokuyo URG-04LX 2D laser range scanner. In: Proc. of International Conference on Robotics and Automation, ICRA 2009, Kobe, Japan (May 2009)Google Scholar
  13. 13.
    MikroKopter. Website (2010), http://www.mikrokopter.com
  14. 14.
    Montesano, L., Minguez, J., Montano, L.: Probabilistic Scan Matching for Motion Estimation in Unstructured Environments, pp. 3499–3504 (2005)Google Scholar
  15. 15.
    Nguyen, V., Martinelli, A., Tomatis, N., Siegwart, R.: A Comparison of Line Extraction Algorithms using 2D Laser Rangefinder for Indoor Mobile Robotics. In: Proc. of the IEEE/RSJ Intenational Conference on Intelligent Robots and Systems, IROS 2005, Edmonton, Canada. IEEE, Los Alamitos (2005)Google Scholar
  16. 16.
    Ribo, M., Brandner, M.: State of the Art on Vision-Based Structured Light Systems for 3D Measurements. In: International Workshop on Robotic and Sensor Environments, ROSE 2005, pp. 2–6 (October 2005)Google Scholar
  17. 17.
    Balakirsky, S., Carpin, S., Lewis, M.: Robots, Games, and Research: Success stories in USARSim. In: Workshop Proc. of the International Conference on Intelligent Robots and Systems, IROS 2009, St. Louis, Missouri, USA (2009)Google Scholar
  18. 18.
    Schmits, T., Visser, A.: An Omnidirectional Camera Simulation for the USARSim World. In: Proc. of the 12th RoboCup International Symposium, Suzhou, China (2008)Google Scholar
  19. 19.
    USARSim. Unified System for Automation and Robot Simulation (2010), http://sourceforge.net/projects/usarsim/

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sebastian Drews
    • 1
  • Sven Lange
    • 1
  • Peter Protzel
    • 1
  1. 1.Chemnitz University of TechnologyChemnitzGermany

Personalised recommendations