Efficient Privacy-Preserving Data Mining in Malicious Model

  • Keita Emura
  • Atsuko Miyaji
  • Mohammad Shahriar Rahman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6440)


In many distributed data mining settings, disclosure of the original data sets is not acceptable due to privacy concerns. To address such concerns, privacy-preserving data mining has been an active research area in recent years. While confidentiality is a key issue, scalability is also an important aspect to assess the performance of a privacy-preserving data mining algorithms for practical applications. With this in mind, Kantarcioglu et al. proposed secure dot product and secure set-intersection protocols for privacy-preserving data mining in malicious adversarial model using zero knowledge proofs, since the assumption of semi-honest adversary is unrealistic in some settings. Both the computation and communication complexities are linear with the number of data items in the protocols proposed by Kantarcioglu et al. In this paper, we build efficient and secure dot product and set-intersection protocols in malicious model. In our work, the complexity of computation and communication for proof of knowledge is always constant (independent of the number of data items), while the complexity of computation and communication for the encrypted messages remains the same as in Kantarcioglu et al.’s work (linear with the number of data items). Furthermore, we provide the security model in Universal Composability framework.


Privacy-preserving Data Mining Malicious Model Threshold Two-party Computation Efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boneh, D., Goh, E.G., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bunn, P., Ostrovsky, R.: Secure Two-Party k-Means Clustering. In: ACM CCS 2007, pp. 486–497 (2007)Google Scholar
  3. 3.
    Cramer, R., Damgård, I., Nielsen, J.B.: Multi-party computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Damgard, I., Hofheinz, D., Kiltz, E., Thorbek, R.: Public-Key Encryption with Non-interactive Opening. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 239–255. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Damgard, I., Thorbek, R.: Non-interactive proofs for integer multiplication. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 412–429. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Galindo, D., Libert, B., Fischlin, M., Fuchsbauer, G., Lehmann, A., Manulis, M., Schroder, D.: Public-Key Encryption with Non-interactive Opening: New Constructions and Stronger Definitions. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 333–350. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Adversaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 312–331. Springer, Heidelberg (2010)Google Scholar
  8. 8.
    Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering over arbitrarily partitioned data. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 593–599 (2005)Google Scholar
  9. 9.
    Kantarcıoǧlu, M., Clifton, C.: Privately computing a distributed k-nn classifier. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 279–290. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Kantarcioglu, M., Kardes, O.: Privacy-preserving data mining in the malicious model. International Journal of Information and Computer Security 2(4), 353–375 (2008)CrossRefGoogle Scholar
  11. 11.
    Lai, J., Deng, R.H., Liu, S., Kou, W.: Efficient CCA-Secure PKE from Identity-Based Techniques. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 132–147. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Lin, X., Clifton, C., Zhu, M.: Privacy-preserving clustering with distributed EM mixture modeling. Knowledge and Information Systems 8(1), 68–81 (2005)CrossRefGoogle Scholar
  13. 13.
    Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Okamoto, T., Takashima, K.: Homomorphic Encryption and Signatures from Vector Decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 57–74. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Paillier, P.: Public-key cryptosystems based on composite degree residue classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Su, C., Bao, F., Zhou, J., Takagi, T., Sakurai, K.: Security and Correctness Analysis on Privacy-Preserving k-Means Clustering Schemes. IEICE Trans. Fundamentals E92-A(4), 1246–1250 (2009)Google Scholar
  17. 17.
  18. 18.
    Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned data. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 639–644 (2002)Google Scholar
  19. 19.
    Yang, Z., Wright, R.N.: Privacy-preserving computation of Bayesian networks on vertically partitioned data. IEEE Transactions on Knowledge and Data Engineering 18(9), 1253–1264 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Keita Emura
    • 1
  • Atsuko Miyaji
    • 2
  • Mohammad Shahriar Rahman
    • 2
  1. 1.Center for Highly Dependable Embedded Systems TechnologyJapan Advanced Institute of Science and TechnologyNomiJapan
  2. 2.School of Information ScienceJapan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations