Finding Potential Research Collaborators in Four Degrees of Separation

  • Paweena Chaiwanarom
  • Ryutaro Ichise
  • Chidchanok Lursinsap
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6441)


This paper proposed a methodology for finding the potential research collaborators based on structural approach underlying co-authorship network and semantic approach extends from author-topic model. We proposed the valuable features for identifying the closeness between researchers in co-authorship network. We also proved that using the combination between structural approach and semantic approach is work well. Our methodology able to suggest the researchers who appear within the four degrees of separation from the specific researcher who have never collaborated together in the past periods. The experimental results are discussed in the various aspects, for instance, top-n retrieved researchers and researcher’s community. The results show that our proposed idea is the applicable method used for collaborator suggestion task.


co-authorship network author-topic model graph mining digital library research collaboration social network analysis information retrieval 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu, X., Bollen, J., Nelson, M.L., Sompel, H.V.: Co-Authorship Networks in the Digital Library Research Community. Information Processing and Management- An International Journal 41(6), 1462–1480 (2005)CrossRefGoogle Scholar
  2. 2.
    Sharma, M., Urs, S.R.: Small World Phenomenon and Author Collaboration: How Small and Connected is the Digital Library World? In: Goh, D.H.-L., Cao, T.H., Sølvberg, I.T., Rasmussen, E. (eds.) ICADL 2007. LNCS, vol. 4822, pp. 510–511. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Steyvers, M., Smyth, P., Rosen-Zvi, M., Griffiths, T.: Probabilistic Author-Topic Models for Information Discovery. In: 10th ACM SIGKDD, pp. 306–305 (2004)Google Scholar
  4. 4.
    McNee, S.M., Albert, I., Cosley, D., Gopalkrishnan, P., Lam, S.K., Rashid, A.M., Konstan, J.A., Riedl, J.: On the Recommending of Citations for Research Papers. In: CSCW 2002, pp. 116–125 (2002)Google Scholar
  5. 5.
    Torres, R., McNee, S.M., Abel, M., Konstan, J.A., Riedl, J.: Enhancing Digital Libraries with TechLens+. In: JCDL 2004, pp. 228–236 (2004)Google Scholar
  6. 6.
    Huang, J., Zhuang, Z., Li, J., Giles, C.L.: Collaboration Over Time: Characterizing and Modeling Network Evolution. In: WSDM 2008, pp. 107–116 (2008)Google Scholar
  7. 7.
    Wohlfarth, T., Ichise, R.: Semantic and Event-Based Approach for Link Prediction. In: Yamaguchi, T. (ed.) PAKM 2008. LNCS (LNAI), vol. 5345, pp. 50–61. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Sachan, M., Ichise, R.: Using Abstract Information and Community Alignment Information for Link Prediction. In: ICMLC 2010, pp. 61–65 (2010)Google Scholar
  9. 9.
    Zaiane, O.R., Chen, J., Goebel, R.: Mining Research Communities in Bibliographical Data. In: Zhang, H., Spiliopoulou, M., Mobasher, B., Giles, C.L., McCallum, A., Nasraoui, O., Srivastava, J., Yen, J. (eds.) WebKDD 2007. LNCS, vol. 5439, pp. 59–76. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Ichise, R., Fujita, S., Muraki, T., Takeda, H.: Research Mining Using the Relationships among Authos, Topics and Papers. In: IV 2007, pp. 425–430 (2007)Google Scholar
  11. 11.
    Saeed-Ul-Hassan and Ichise, R.: Discovering Research Domains Using Distance Matrix and Coauthorship Network. In: LACTS’2009, pp. 1252-1257 (2009)Google Scholar
  12. 12.
    The scopus databased (2010),
  13. 13.
    SharpNLP - open source natural language processing tools (2006),
  14. 14.
    Porter stemming algorithm (2010),

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Paweena Chaiwanarom
    • 1
    • 2
  • Ryutaro Ichise
    • 2
  • Chidchanok Lursinsap
    • 1
  1. 1.Advanced Virtual and Intelligent Computing (AVIC) Center, Department of MathematicsChulalongkorn UniversityBangkokThailand
  2. 2.Principles of Informatics Research DivisionNational Institute of InformaticsTokyoJapan

Personalised recommendations