Advertisement

Hardware Acceleration for CGP: Graphics Processing Units

  • Simon L. HardingEmail author
  • Wolfgang Banzhaf
Part of the Natural Computing Series book series (NCS)

Abstract

As with other forms of genetic programming, evaluation of the fitness function in CGP is a major bottleneck. Recently there has been a lot of interest in exploiting the parallel processing capabilities of the Graphics Processing Units that are found on modern graphics cards. Using these processors it is possible to greatly accelerate evaluation of CGP individuals.

Keywords

Genetic Program Graphic Processing Unit Graphic Card Single Instruction Multiple Data Cartesian Genetic Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banzhaf, W., Harding, S.L., Langdon, W.B., Wilson, G.: Accelerating Genetic Programming through Graphics Processing Units. In: R.L. Riolo, T. Soule, B. Worzel (eds.) Genetic Programming Theory and Practice VI, chap. 1, pp. 229–249. Springer (2008) Google Scholar
  2. 2.
    Chitty, D.M.: A data parallel approach to genetic programming using programmable graphics hardware. In: D. Thierens, H.G. Beyer, et al. (eds.) Proc. Genetic and Evolutionary Computation Conference, vol. 2, pp. 1566–1573. ACM Press (2007) Google Scholar
  3. 3.
  4. 4.
    Harding, S.L.: Genetic Programming on GPU Bibliography. http://www.gpgpgpu.com/
  5. 5.
    Harding, S.L.: Evolution of Image Filters on Graphics Processor Units Using Cartesian Genetic Programming. In: J. Wang (ed.) IEEE World Congress on Computational Intelligence, pp. 1921–1928. IEEE Press (2008) Google Scholar
  6. 6.
    Harding, S.L., Banzhaf, W.: Fast Genetic Programming and Artificial Developmental Systems on GPUs. In: International Symposium on High Performance Computing Systems and Applications, p. 2. IEEE Computer Society (2007) CrossRefGoogle Scholar
  7. 7.
    Harding, S.L., Banzhaf, W.: Fast genetic programming on GPUs. In: Proc. European Conference on Genetic Programming, LNCS, vol. 4445, pp. 90–101. Springer (2007) Google Scholar
  8. 8.
    Harding, S.L., Banzhaf, W.: Genetic programming on GPUs for image processing. International Journal of High Performance Systems Architecture 1(4), 231–240 (2008) CrossRefGoogle Scholar
  9. 9.
    Harding, S.L., Banzhaf, W.: Genetic Programming on GPUs for Image Processing. In: J. Lanchares, F. Fernandez, J. Risco-Martin (eds.) Proc. International Workshop on Parallel and Bioinspired Algorithms, pp. 65–72. Complutense University of Madrid Press (2008) Google Scholar
  10. 10.
    Harding, S.L., Banzhaf, W.: Distributed Genetic Programming on GPUs using CUDA. In: I. Hidalgo, F. Fernandez, J. Lanchares (eds.) Proc. International Workshop on Parallel Architectures and Bioinspired Algorithms, pp. 1–10 (2009) Google Scholar
  11. 11.
    Koza, J.: Genetic Programming: On the Programming of Computers by Natural Selection. MIT Press (1992) zbMATHGoogle Scholar
  12. 12.
    Langdon, W.B., Banzhaf, W.: Repeated Sequences in Linear Genetic Programming Genomes. Complex Systems 15(4), 285–306 (2005) MathSciNetzbMATHGoogle Scholar
  13. 13.
    Langdon, W.B., Banzhaf, W.: A SIMD Interpreter for Genetic Programming on GPU Graphics Cards. In: Proc. European Conference on Genetic Programming, LNCS, vol. 4971, pp. 73–85. Springer (2008) Google Scholar
  14. 14.
    Robilliard, D., Marion-Poty, V., Fonlupt, C.: Population Parallel GP on the G80 GPU. In: Proc. European Conference on Genetic Programming, LNCS, vol. 4971, pp. 98–109. Springer (2008) Google Scholar
  15. 15.
    Tarditi, D., Puri, S., Oglesby, J.: MSR-TR-2005-184 Accelerator: Using Data Parallelism to Program GPUs for General-Purpose Uses. Tech. rep., Microsoft Research (2006) Google Scholar
  16. 16.
    Wilson, G., Banzhaf, W.: Linear Genetic Programming GPGPU on Microsoft’s Xbox 360. In: J. Wang (ed.) IEEE World Congress on Computational Intelligence. IEEE Press (2008) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA)MannoSwitzerland

Personalised recommendations