Advertisement

Self-Modifying Cartesian Genetic Programming

  • Simon L. HardingEmail author
  • Julian F. Miller
  • Wolfgang Banzhaf
Part of the Natural Computing Series book series (NCS)

Abstract

Self-modifying Cartesian genetic programming (SMCGP) is a general purpose, graph-based, form of genetic programming founded on Cartesian genetic programming. In addition to the usual computational functions, it includes functions that can modify the program encoded in the genotype. SMCGP has high scalability in that evolved programs encoded in the genotype can be iterated to produce an infinite sequence of programs (phenotypes). It also allows programs to acquire more inputs and produce more outputs during iterations. Another attractive feature of SMCGP is that it facilitates the evolution of provably general solutions to various computational problems.

Keywords

Genetic Programming Boolean Function Evolutionary Computation Output Node Current Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banzhaf, W., Miller, J.F.: The Challenge of Complexity, chap. 11, pp. 243–260. Kluwer Academic (2004) Google Scholar
  2. 2.
    Harding, S., Miller, J.F., Banzhaf, W.: Self-modifying Cartesian Genetic Programming. In: Proc. Genetic and Evolutionary Computation Conference, pp. 1021–1028 (2007) Google Scholar
  3. 3.
    Harding, S., Miller, J.F., Banzhaf, W.: Development and Learning Using Self-modifying Cartesian Genetic Programming. In: Proc. Genetic and Evolutionary Computation Conference, pp. 699–706. ACM Press (2009) CrossRefGoogle Scholar
  4. 4.
    Harding, S., Miller, J.F., Banzhaf, W.: Self-modifying Cartesian Genetic Programming: Fibonacci, Squares, Regression and Summing. In: Proc. European Conference on Genetic Programming, LNCS, vol. 5481, pp. 133–144 (2009) Google Scholar
  5. 5.
    Harding, S., Miller, J.F., Banzhaf, W.: Self-modifying Cartesian Genetic Programming: Parity. In: Proc. IEEE Congress on Evolutionary Computation, pp. 285–292 (2009) Google Scholar
  6. 6.
    Harding, S., Miller, J.F., Banzhaf, W.: Developments in Cartesian Genetic Programming: Self-modifying CGP. Genetic Programming and Evolvable Machines 11, 397–439 (2010) CrossRefGoogle Scholar
  7. 7.
    Harding, S., Miller, J.F., Banzhaf, W.: Self-modifying Cartesian Genetic Programming: Finding algorithms that calculate pi and e to arbitrary precision. In: Proc. Genetic and Evolutionary Computation Conference, pp. 579–586. ACM (2010) Google Scholar
  8. 8.
    Harding, S., Miller, J.F., Banzhaf, W.: SMCGP2: Finding Algorithms That Approximate Numerical Constants Using Quaternions and Complex Numbers. In: Proc. Genetic and Evolutionary Computation Conference Companion, pp. 197–198. ACM (2011) Google Scholar
  9. 9.
    Harding, S., Miller, J.F., Banzhaf, W.: SMCGP2: Self-modifying Cartesian Genetic Programming in Two Dimensions. In: Proc. Genetic and Evolutionary Computation Conference, pp. 1491–1498. ACM (2011) Google Scholar
  10. 10.
    Huelsbergen, L.: Finding General Solutions to the Parity Problem by Evolving Machine-Language Representations. In: J.R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel, M.H. Garzon, D.E. Goldberg, H. Iba, R. Riolo (eds.) Proc. Conference on Genetic Programming, pp. 158–166. Morgan Kaufmann (1998) Google Scholar
  11. 11.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural Selection. MIT Press (1992) zbMATHGoogle Scholar
  12. 12.
    Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press (1994) zbMATHGoogle Scholar
  13. 13.
    Langdon, W.B.: Scaling of program fitness spaces. Evolutionary Computation 7(4), 399–428 (1999) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Poli, R., Langdon, W.B.: Foundations of Genetic Programming. Springer (2002) zbMATHGoogle Scholar
  15. 15.
    Poli, R., Page, J.: Solving High-Order Boolean Parity Problems with Smooth Uniform Crossover, Sub-Machine Code GP and Demes. Genetic Programming and Evolvable Machines 1(1–2), 37–56 (2000) zbMATHGoogle Scholar
  16. 16.
    Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009) CrossRefGoogle Scholar
  17. 17.
    Schmidt, M., Lipson, H.: Solving iterated functions using genetic programming. In: Proc. Conference Companion on Genetic and Evolutionary Computation, pp. 2149–2154. ACM (2009) Google Scholar
  18. 18.
    Spector, L., Clark, D.M., Lindsay, I., Barr, B., Klein, J.: Genetic programming for finite algebras. In: Proc. Genetic and Evolutionary Computation Conference, pp. 1291–1298. ACM (2008) Google Scholar
  19. 19.
    Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution with the Push programming language. Genetic Programming and Evolvable Machines 3, 7–40 (2002) zbMATHCrossRefGoogle Scholar
  20. 20.
    Streeter, M., Becker, L.A.: Automated Discovery of Numerical Approximation Formulae via Genetic Programming. Genetic Programming and Evolvable Machines 4, 255–286 (2003) CrossRefGoogle Scholar
  21. 21.
    Walker, J.A., Miller, J.F.: Investigating the Performance of Module Acquisition in Cartesian Genetic Programming. In: Proc. Genetic and Evolutionary Computation Conference, pp. 1649–1656. ACM (2005) CrossRefGoogle Scholar
  22. 22.
    Walker, J.A., Miller, J.F.: Automatic Acquisition, Evolution and Re-use of Modules in Cartesian Genetic Programming. IEEE Transactions on Evolutionary Computation 12, 397–417 (2008) CrossRefGoogle Scholar
  23. 23.
    Wong, L.M.: Evolving Recursive Programs by Using Adaptive Grammar Based Genetic Programming. Genetic Programming and Evolvable Machines 6, 421–455 (2005) CrossRefGoogle Scholar
  24. 24.
    Wong, M.L., Leung, K.S.: Evolving Recursive Functions for the Even-Parity Problem Using Genetic Programming. In: P.J. Angeline, K.E. Kinnear, Jr. (eds.) Advances in Genetic Programming 2, chap. 11, pp. 221–240. MIT Press (1996) Google Scholar
  25. 25.
    Yu, T.: Hierachical Processing for Evolving Recursive and Modular Programs Using Higher Order Functions and Lambda Abstractions. Genetic Programming and Evolvable Machines 2, 345–380 (2001) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Simon L. Harding
    • 1
    Email author
  • Julian F. Miller
  • Wolfgang Banzhaf
  1. 1.Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA)MannoSwitzerland

Personalised recommendations