Advertisement

Mitosis Extraction in Breast-Cancer Histopathological Whole Slide Images

  • Vincent Roullier
  • Olivier Lézoray
  • Vinh-Thong Ta
  • Abderrahim Elmoataz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6453)

Abstract

In this paper, we present a graph-based multi-resolution approach for mitosis extraction in breast cancer histological whole slide images. The proposed segmentation uses a multi-resolution approach which reproduces the slide examination done by a pathologist. Each resolution level is analyzed with a focus of attention resulting from a coarser resolution level analysis. At each resolution level, a spatial refinement by semi-supervised clustering is performed to obtain more accurate segmentation around edges. The proposed segmentation is fully unsupervised by using domain specific knowledge.

Keywords

Breast Cancer Dimensionality Reduction Locally Binary Pattern Visualization Tool Resolution Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tavassoli, F., Devilee, P. (eds.): Pathology and Genetics, Tumours of the Breast and Female Genital Organ. International Agency for Research on Cancer Press (2003)Google Scholar
  2. 2.
    Petushi, S., Garcia, F., Haber, M., Katsinis, C., Tozeren, A.: Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. BMC Medical Imaging 6, 1–11 (2006)CrossRefGoogle Scholar
  3. 3.
    Ruiz, A., Kong, J., Ujaldon, M., Boyer, K., Saltz, J., Gurcan, M.: Pathological image segmentation for neuroblasma using the gpu. In: ISBI, pp. 296–299 (2008)Google Scholar
  4. 4.
    Signolle, N., Plancoulaine, B., Herlin, P., Revenu, M.: Texture-based multiscale segmentation: Application to stromal compartment characterization on ovarian carcinoma virtual slides. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008. LNCS, vol. 5099, pp. 173–182. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Elston, C.W., Ellis, I.O.: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19, 403–410 (1991)CrossRefGoogle Scholar
  6. 6.
    Dalle, J., Leow, W., Racoceanu, D., Tutac, A., Putti, T.: Automatic breast cancer grading of histopathological images. In: EMBS, pp. 3052–3055 (2008)Google Scholar
  7. 7.
    Kong, J., Sertel, O., Shimada, H., Boyer, K., Saltz, J., Gurcan, M.: Computer-aided evaluation of neuroblastoma on whole-slide histology images: Classifying grade of neuroblastic differentiation. Pattern Recognition 42, 1080–1092 (2009)CrossRefGoogle Scholar
  8. 8.
    Elmoataz, A., Lézoray, O., Bougleux, S.: Nonlocal discrete regularization an weighted graphs: a framework for image and manifolds processing. IEEE Transactions on Image Processing 17, 1047–1060 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Roullier, V., Ta, V.T., Lézoray, O., Elmoataz, A.: Graph-based multi-resolution segmentation of histological whole slide images. In: ISBI, pp. 153–156 (2010)Google Scholar
  10. 10.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15, 1373–1396 (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29, 51–59 (1996)CrossRefGoogle Scholar
  12. 12.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 888–905 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Vincent Roullier
    • 1
  • Olivier Lézoray
    • 1
  • Vinh-Thong Ta
    • 2
  • Abderrahim Elmoataz
    • 1
  1. 1.ENSICAEN, CNRS, GREYC UMR 6072 - Équipe ImageUniversité de Caen Basse-NormandieFrance
  2. 2.LaBRIUniversité de Bordeaux – CNRS – IPBFrance

Personalised recommendations