Enhancing Iris Matching Using Levenshtein Distance with Alignment Constraints

  • Andreas Uhl
  • Peter Wild
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6453)

Abstract

Iris recognition from surveillance-type imagery is an active research topic in biometrics. However, iris identification in unconstrained conditions raises many proplems related to localization and alignment, and typically leads to degraded recognition rates. While development has mainly focused on more robust preprocessing, this work highlights the possibility to account for distortions at matching stage. We propose a constrained version of the Levenshtein Distance (LD) for matching of binary iris-codes as an alternative to the widely accepted Hamming Distance (HD) to account for iris texture distortions by e.g. segmentation errors or pupil dilation. Constrained LD will be shown to outperform HD-based matching on CASIA (third version) and ICE (2005 edition) datasets. By introducing LD alignment constraints, the matching problem can be solved in O(n ·s) time and O(n + s) space with n and s being the number of bits and shifts, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bowyer, K.W., Hollingsworth, K., Flynn, P.J.: Image understanding for iris biometrics: A survey. Computer Vision and Image Understanding 110, 281–307 (2008)CrossRefGoogle Scholar
  2. 2.
    Matey, J.R., Naroditsky, O., Hanna, K., Kolczynski, R., LoIacono, D.J., Mangru, S., Tinker, M., Zappia, T.M., Zhao, W.Y.: Iris on the move: Acquisition of images for iris recognition in less constrained environments. Proceedings of the IEEE 94, 1936–1947 (2006)CrossRefGoogle Scholar
  3. 3.
    Wheeler, F.W., Perera, A.G., Abramovich, G., Yu, B., Tu, P.H.: Stand-off iris recognition system. In: Proceedings of the IEEE Second International Conference on Biometrics: Theory, Applications and Systems (BATS), pp. 1–7 (2008)Google Scholar
  4. 4.
    Proença, H., Alexandre, L.A.: Iris recognition: Analysis of the error rates regarding the accuracy of the segmentation stage. Elsevier Image and Vision Computing 28, 202–206 (2010)CrossRefGoogle Scholar
  5. 5.
    Matey, J.R., Broussard, R., Kennell, L.: Iris image segmentation and sub-optimal images. Image and Vision Computing 28, 215–222 (2010)CrossRefGoogle Scholar
  6. 6.
    Daugman, J.: How iris recognition works. IEEE Transactions on Circiuts and Systems for Video Technology 14, 21–30 (2004)CrossRefGoogle Scholar
  7. 7.
    Cha, S.H., Tappert, C., Yoon, S.: Enhancing binary feature vector similarity measures. Journal of Pattern Recognition Research 1, 63–77 (2006)CrossRefGoogle Scholar
  8. 8.
    Choi, S., Cha, S., Tappert, C.: A survey of binary similarity and distance measures. Journal of Systemics, Cybernetics and Informatics 8, 43–48 (2010)Google Scholar
  9. 9.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10, 707–710 (1966)MathSciNetMATHGoogle Scholar
  10. 10.
    Yuan, X., Shi, P.: A non-linear normalization model for iris recognition. In: Li, S.Z., Sun, Z., Tan, T., Pankanti, S., Chollet, G., Zhang, D. (eds.) IWBRS 2005. LNCS, vol. 3781, pp. 135–142. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Wyatt, H.J.: A ’minimum-wear-and-tear’ meshwork for the iris. Vision Research 40, 2167–2176 (2000)CrossRefGoogle Scholar
  12. 12.
    Schimke, S., Vielhauer, C., Dittmann, J.: Using adapted levenshtein distance for on-line signature authentication. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004), Washington, DC, USA, vol. 2, pp. 931–934. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  13. 13.
    Myers, C.S., Rabiner, L.R.: A comparative study of several dynamic time-warping algorithms for connected word recognition. The Bell System Technical Journal 60, 1389–1409 (1981)CrossRefGoogle Scholar
  14. 14.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient iris recognition by characterizing key local variations. IEEE Transactions on Image Processing 13, 739–750 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andreas Uhl
    • 1
  • Peter Wild
    • 1
  1. 1.Department of Computer SciencesUniversity of SalzburgSalzburgAustria

Personalised recommendations