Interpolating 3D Diffusion Tensors in 2D Planar Domain by Locating Degenerate Lines

  • Chongke Bi
  • Shigeo Takahashi
  • Issei Fujishiro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6453)


Interpolating diffusion tensor fields is a key technique to visualize the continuous behaviors of biological tissues such as nerves and muscle fibers. However, this has been still a challenging task due to the difficulty to handle possible degeneracy, which means the rotational inconsistency caused by degenerate points. This paper presents an approach to interpolating 3D diffusion tensors in 2D planar domains by aggressively locating the possible degeneracy while fully respecting the underlying transition of tensor anisotropy. The primary idea behind this approach is to identify the degeneracy using minimum spanning tree-based clustering algorithm, and resolve the degeneracy by optimizing the associated rotational transformations. Degenerate lines are generated in this process to retain the smooth transitions of anisotropic features. Comparisons with existing interpolation schemes will be also provided to demonstrate the technical advantages of the proposed approach.


Fractional Anisotropy Diffusion Tensor Rotation Matrice Anisotropic Feature Diffusion Tensor Magnetic Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hesselink, L., Levy, Y., Lavin, Y.: The topology of symmetric, second-order 3D tensor fields. IEEE Transactions on Visualization and Computer Graphics 3, 1–11 (1997)CrossRefGoogle Scholar
  2. 2.
    Zheng, X., Pang, A.: Topological lines in 3D tensor fields. In: Proceedings of the Conference on Visualization 2004, pp. 313–320. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  3. 3.
    Westin, C., Peled, S., Gudbjartsson, H., Kikinis, R., Jolesz, F.: Geometrical diffusion measures for MRI from tensor basis analysis. In: Proceedings of ISMRM 1997, p. 1742 (1997)Google Scholar
  4. 4.
    Westin, C.F., Maier, S.E., Mamata, H., Nabavi, A., Jolesz, F.A., Kikinis, R.: Processing and visualization for diffusion tensor MRI. Medical Image Analysis 6, 93–108 (2002)CrossRefGoogle Scholar
  5. 5.
    Batchelor, P.G., Moakher, M., Atkinson, D., Calamante, F., Connelly, A.: A rigorous framework for diffusion tensor calculus. Magnetic Resonance in Medicine 53, 221–225 (2005)CrossRefGoogle Scholar
  6. 6.
    Fletcher, P.T., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Processing 87, 250–262 (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine 56, 411–421 (2006)CrossRefGoogle Scholar
  8. 8.
    Kindlmann, G., Estepar, R., Niethammer, M., Haker, S., Westin, C.: Geodesic-Loxodromes for diffusion tensor interpolation and difference measurement. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 1–9. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Merino-Caviedes, S., Martin-Fernandez, M.: A general interpolation method for symmetric second-rank tensors in two dimensions. In: Proceeding of IEEE International Symposium on Biomedical Imaging, pp. 931–934 (2008)Google Scholar
  10. 10.
    Hotz, I., Sreevalsan-Nair, J., Hamann, B.: Tensor field reconstruction based on eigenvector and eigenvalue interpolation. In: Scientific Visualization: Advanced Concepts, vol. 1, pp. 110–123 (2010)Google Scholar
  11. 11.
    Laidlaw, D., Weickert, J. (eds.): Visualization and Processing of Tensor Fields. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  12. 12.
    Alexa, M.: Linear combination of transformations. ACM Transactions on Graphics 21, 380–387 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Chongke Bi
    • 1
  • Shigeo Takahashi
    • 1
  • Issei Fujishiro
    • 2
  1. 1.Graduate School of Frontier SciencesThe University of TokyoJapan
  2. 2.Department of Information and Computer ScienceKeio UniversityJapan

Personalised recommendations