Advertisement

Subversion Statistics Sifter

  • Christoph Müller
  • Guido Reina
  • Michael Burch
  • Daniel Weiskopf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6455)

Abstract

We present Subversion Statistics Sifter , a visualisation and statistics system for exploring the structure and evolution of data contained in Subversion repositories with respect to both developer activity and source code changes. We support a variety of visualisation techniques, including statistical graphics and graph plots. We exploit the inherent hierarchical structure of software archives to support users of the tool in navigation and orientation tasks and to allow them to obtain insight from the data on different levels of granularity such as directories, files, or even down to single lines of code. The tool is targeted towards large, tiled displays driven by graphics clusters; therefore, distant corresponding views are highlighted by a rubber-banding technique. The system is built on a .NET and WPF basis that exploits data binding and theming of common controls. Following this principle, the system can easily be extended by additional visualisation techniques. We illustrate the usefulness of Subversion Statistics Sifter by case studies of student lab and open source software projects.

Keywords

Detail View Open Source Project Developer Activity Large Display Open Source Software Project 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar, M., Fogel, K.: Open Source Development with CVS, 3rd edn. Paraglyph Press, Scottsdale (2003)Google Scholar
  2. 2.
    Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M.: Version Control with Subversion, 2nd edn. O’Reilly Media, Sebastopol (2008)Google Scholar
  3. 3.
    Stasko, J.T., Domingue, J.B., Brown, M.H., Price, B.A., Foley, J.: Software Visualization. MIT Press, Cambridge (1998)Google Scholar
  4. 4.
    Diehl, S.: Software Visualization: Visualizing the Structure, Behaviour, and Evolution of Software. Springer, Berlin (2007)zbMATHGoogle Scholar
  5. 5.
    Collberg, C., Kobourov, S., Nagra, J., Pitts, J., Wampler, K.: A system for graph-based visualization of the evolution of software. In: Proceedings of ACM SoftVis 2003, pp. 77–86 (2003)Google Scholar
  6. 6.
    Eick, S.G., Steffen, J.L., Sumner, J.E.E.: Seesoft — a tool for visualizing line oriented software statistics. IEEE Transactions on Software Engineering 18, 957–968 (1992)CrossRefGoogle Scholar
  7. 7.
    Froehlich, J., Dourish, P.: Unifying artifacts and activities in a visual tool for distributed software development teams. In: Proceedings of ICSE 2004, pp. 387–396 (2004)Google Scholar
  8. 8.
    Lanza, M.: The Evolution Matrix: Recovering software evolution using software visualization techniques. In: Proceedings of IWPSE 2001, pp. 37–42 (2001)Google Scholar
  9. 9.
    Wu, J., Spitzer, C.W., Hassan, A.E., Holt, R.C.: Evolution Spectrographs: Visualizing punctuated change in software evolution. In: Proceedings of IWPSE 2004, pp. 57–66 (2004)Google Scholar
  10. 10.
    Voinea, L., Telea, A., van Wijk, J.J.: CVSscan: Visualization of code evolution. In: Proceedings of ACM Softvis 2005, pp. 47–56 (2005)Google Scholar
  11. 11.
    Viegas, F.B., Wattenberg, M., Dave, K.: Studying cooperation and conflict between authors with history flow visualizations. In: Proceedings of CHI 2004, pp. 575–582 (2004)Google Scholar
  12. 12.
    Kirstein, C., Müller, H.: Interaction with a projection screen using a camera-tracked laser pointer. In: Proceedings of Multimedia Modeling 1998, pp. 191–192 (1998)Google Scholar
  13. 13.
    Chen, X., Davis, J.: Lumipoint: Multi-user laser-based interaction on large tiled displays. Technical report, Stanford University (2001)Google Scholar
  14. 14.
    Sears, A., Shneiderman, B.: High precision touchscreens: Design strategies and comparisons with a mouse. International Journal of Man-Machine Studies 34, 593–613 (1991)CrossRefGoogle Scholar
  15. 15.
    Guimbretiére, F., Winograd, T.: Flowmenu: combining command, text, and data entry. In: Proceedings of ACM UIST 2000, pp. 213–216 (2000)Google Scholar
  16. 16.
    Schaeffer, B., Goudeseune, C.: Syzygy: Native PC cluster VR. In: Proceedings of IEEE VR 2003, pp. 15–22 (2003)Google Scholar
  17. 17.
    Bruls, M., Huizing, K., van Wijk, J.J.: Squarified treemaps. In: Proceedings of EG/IEEE TCVG Symposium on Visualization, pp. 33–42 (1999)Google Scholar
  18. 18.
    Ware, C.: Visual Thinking for Design. Morgan Kaufman, Burlington (2008)Google Scholar
  19. 19.
    Baudisch, P., Cutrell, E., Robbins, D., Czerwinski, M., Tandler, P., Bederson, B., Zierlinger, A.: Drag-and-pop and drag-and-pick: Techniques for accessing remote screen content on touch- and pen-operated systems. In: Proceedings of Interact 2003, pp. 57–64 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christoph Müller
    • 1
  • Guido Reina
    • 1
  • Michael Burch
    • 1
  • Daniel Weiskopf
    • 1
  1. 1.VISUSUniversität StuttgartGermany

Personalised recommendations