Advertisement

Using Perceptual Color Contrast for Color Image Processing

  • Guangming Xiong
  • Dah-Jye Lee
  • Spencer G. Fowers
  • Jianwei Gong
  • Huiyan Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6455)

Abstract

Many grayscale image processing techniques such as edge and feature detection, template matching, require the computations of image gradients and intensity difference. These computations in grayscale are very much like measuring color difference between two colors. The goal of this work is to determine an efficient method to represent color difference so that many existing grayscale image processing techniques that require the computations of intensity difference and image gradients can be adapted for color without significantly increasing the amount of data to process and without significantly altering the grayscale-based algorithms. In this paper, several perceptual color contrast measurement formulas are evaluated to determine the most applicable metric for color difference representation. Well-known edge and feature detection algorithms using color contrast are implemented to prove its feasibility.

Keywords

Color Difference Image Gradient Edge Strength Harris Corner Detector Color Image Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mojsilovic, A., Soljanin, E.: Color Quantization and Processing by Fibonacci Lattices. IEEE Transactions on Image Processing 10, 1712–1725 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Chen, H., Chien, W., Wang, S.: Contrast-Based Color Image Segmentation. IEEE Signal Processing Letters 11, 641–644 (2004)CrossRefGoogle Scholar
  3. 3.
    Liu, K.C.: Color-edge Detection Based on Discrimination of Noticeable Color Contrasts. International Journal of Imaging Systems and Technology 19, 332–339 (2009)CrossRefGoogle Scholar
  4. 4.
    Moreno1, R., Garcia, M.A., Puig, D., Julia, C.: Robust Color Edge Detection through Tensor Voting. In: IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, pp. 2153–2156 (2009)Google Scholar
  5. 5.
    Chou, C., Liu, K.: Performance Analysis of Color Image Watermarking Schemes Using Perceptually Redundant Signal Spaces. In: International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Pasadena, CA, USA, pp. 651–654 (2006)Google Scholar
  6. 6.
    Fondón, I., Serrano, C., Acha, B.: Segmentation of Skin Cancer Images based on Multistep Region Growing (2009), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.145.1619
  7. 7.
    Li, X., Zhang, X.: A Perceptual Color Edge Detection Algorithm. In: International Conference on Computer Science and Software Engineering, Wuhan, China, pp. 297–300 (2008)Google Scholar
  8. 8.
    Acharya, T., Ray, A.K.: Image Processing Principles and Applications. A John Wiley & Sons, Inc., Chichester (2005)CrossRefGoogle Scholar
  9. 9.
    Luo, M.R., Cui, G., Rigg, B.: The Development of the CIE 2000 Color Difference Formula: CIEDE 2000. Color Research and Application 26, 340–350 (2001)CrossRefGoogle Scholar
  10. 10.
    Cui, G., Luo, M.R., Rigg, B., Roesler, G., Witt, K.: Uniform Color Spaces Based on the DIN99 Color-Difference Formula. Color Research and Application 27, 282–290 (2002)CrossRefGoogle Scholar
  11. 11.
    DIN Deutsche Institut fur̈ Normung e.V., DIN 6176: Farbmetrische Bestimmung von Farbabstan̈den bei Kor̈oerfarben nach der DIN99-Formel, Berlin (2000) Google Scholar
  12. 12.
    Luo, M.R., Cui, G., Li, C.: Uniform Color Spaces Based on CIECAM02 Color Appearance Model. Color Research and Application 31, 320–330 (2006)CrossRefGoogle Scholar
  13. 13.
    Huertas, R., Melgosa, M.: Performance of a Color-difference Formula Based on OSA-UCS Space Using Small–medium Color Differences. Journal of the Optical Society of America A 23, 2077–2084 (2006)CrossRefGoogle Scholar
  14. 14.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  15. 15.
    Compa, P., Satorre, R., Rizo, R., Molina, R.: Improving Depth Estimation Using Color Information in Stereo Vision. In: IASTED International Conference on Visualization, Imaging, and Image Processing, Benidorm, Spain, pp. 377–389 (2005)Google Scholar
  16. 16.
    Cabani, I., Toulminet, G., Bensrhair, A.: Self-adaptive Color Edges Segmentation and Matching for Road Obstacle Detection. In: IEEE Intelligent Vehicles Symposium, Tokyo, Japan, pp. 58–63 (2006)Google Scholar
  17. 17.
    Scharstein, D., Szeliski, R.: A Taxonomy and Evaluation of Dense Two-frame Stereo Correspondence Algorithms. International Journal of Computer Vision 47, 7–42 (2002)CrossRefzbMATHGoogle Scholar
  18. 18.
    Scharstein, D., Szeliski, R.: High-accuracy Stereo Depth Maps Using Structured Light. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, vol. 1, pp. 195–202 (2003)Google Scholar
  19. 19.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Guangming Xiong
    • 1
  • Dah-Jye Lee
    • 2
  • Spencer G. Fowers
    • 2
  • Jianwei Gong
    • 1
  • Huiyan Chen
    • 1
  1. 1.School of Mechanical EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Dept. of Electrical and Computer EngineeringBrigham Young UniversityProvoUSA

Personalised recommendations