Advertisement

Computational Hemodynamics in Intracranial Vessels Reconstructed from Biplane Angiograms

  • Fabien Scalzo
  • Qing Hao
  • Alan M. Walczak
  • Xiao Hu
  • Yiemeng Hoi
  • Kenneth R. Hoffmann
  • David S. Liebeskind
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6455)

Abstract

Recent works in neurology have explored ways to obtain a better understanding of blood flow circulation in the brain with the ultimate goal of improving the treatment of cerebrovascular diseases, such as strokes, stenosis, and aneurysms. In this paper, we propose a framework to reconstruct three-dimensional (3D) models of intracerebral vessels from biplane angiograms. The reconstructed vessel geometries are then used to perform simulations of computational fluid dynamic (CFD). A key component of our framework is to perform such a reconstruction by incorporating user interaction to identify the centerline of the vessels in each view. Then the vessel profile is estimated automatically at each point along the centerlines, and an optimization procedure refines the 3D model using epipolar constraints and back-projection in the original angiograms. Finally, the 3D model of the vessels is then used as the domain where the wall shear stress (WSS), and velocity vectors are estimated from a blood flow model that follows Navier-Stokes equations as an incompressible Newtonian fluid. Visualization of hemodynamic parameters are illustrated on two stroke patients.

Keywords

Computational Fluid Dynamic Middle Cerebral Artery Wall Shear Stress Compute Tomographic Angiography Magnetic Resonance Angiography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cebral, J.R., Hernandez, M., Frangi, A.F.: Computational analysis of blood flow dynamics in cerebral aneurysms from CTA and 3D rotational angiography image data. In: ICCB (2003)Google Scholar
  2. 2.
    Deschamps, T., Schwartz, P., Trebotich, D., Colella, P., Saloner, D., Malladi, R.: Vessel segmentation and blood flow simulation using Level-Sets and Embedded Boundary methods. In: CARS, vol. 1268, pp. 75–80 (2004)Google Scholar
  3. 3.
    Chang, H.H., Duckwiler, G.R., Valentino, D.J., Chu, W.C.: Computer-assisted extraction of intracranial aneurysms on 3d rotational angiograms for computational fluid dynamics modeling. Med. Phys. 36, 5612–5621 (2009)CrossRefGoogle Scholar
  4. 4.
    Quatember, B., Mühlthaler, H.: Generation of CFD meshes from biplane angiograms: an example of image-based mesh generation and simulation. Appl. Numer. Math. 46, 379–397 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Corney, S., Johnston, P.R., Kilpatrick, D.: Construction of realistic branched, three-dimensional arteries suitable for computational modelling of flow. Med. Biol. Eng. Comput. 42, 660–668 (2004)CrossRefGoogle Scholar
  6. 6.
    Wahle, A.: Quantification of coronary hemodynamics and plaque morphology using X-ray angiography and intravascular ultrasound. In: CARS, vol. 1268, pp. 1035–1039 (2004)Google Scholar
  7. 7.
    Platzer, E., Deinzer, F., Paulus, D., Denzler, J.: 3D Blood Flow Reconstruction from 2D Angiograms. Bildverarbeitung für die Medizin, 288–292 (2008)Google Scholar
  8. 8.
    De Santis, G., Mortier, P., De Beule, M., Segers, P., Verdonck, P., Verhegghe, B.: Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography. Med. Biol. Eng. Comput. 48, 371–380 (2010)CrossRefGoogle Scholar
  9. 9.
    Smets, C., van de Werf, F., Suetens, P., Oosterlinck, A.: An expert system for the labeling and 3d reconstruction of the coronary arteries from two projections. Int. J. Card Imaging 5, 145–154 (1990)CrossRefGoogle Scholar
  10. 10.
    Henri, C., Collins, D., Peters, T.: Multimodality image integration for stereotactic surgical planning. Med. Phys. 18, 167–177 (1991)CrossRefGoogle Scholar
  11. 11.
    Delaere, D., Smets, C., Suetens, P., Marchal, G., Van de Werf, F.: Knowledge-based system for the three-dimensional reconstruction of blood vessels from two angiographic projections. Med. Biol. Eng. Comput. 27, 27–36 (1991)CrossRefGoogle Scholar
  12. 12.
    Bullitt, E., Soltys, M., Chen, J., Rosenman, J., Pizer, S.: Three-dimensional reconstruction of intracranial vessels from biplane projection views. J. Neurosci. Methods 66, 13–22 (1996)CrossRefGoogle Scholar
  13. 13.
    Zifan, A., Liatsis, P., Kantartzis, P., Gavaises, M., Karcanias, N., Katritsis, D.: Automatic 3-D reconstruction of coronary artery centerlines from monoplane X-ray angiogram images. Int. J. Biol. Med. Sci. 1, 44–49 (2008)Google Scholar
  14. 14.
    Zheng, S., Meiying, T., Jian, S.: Sequential reconstruction of vessel skeletons from x-ray coronary angiographic sequences. Comput. Med. Imag. Grap. 34, 333–345 (2010)CrossRefGoogle Scholar
  15. 15.
    Hoffmann, K., Sen, A., Lan, L., Chua, K., Esthappan, J., Mazzucco, M.: A system for determination of 3D vessel tree centerlines from biplane images. Int. J. Card Imaging 16, 315–330 (2000)CrossRefGoogle Scholar
  16. 16.
    Gopal, A., Hoffmann, K., Rudin, S., Bednarek, D.: Reconstruction of asymmetric vessel lumen from two views. In: Medical Imaging, vol. 4684, pp. 257–265 (2002)Google Scholar
  17. 17.
    Batchelor, G.K.: An introduction to fluid dynamics. Cambridge University Press, Cambridge (1967)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fabien Scalzo
    • 1
    • 2
  • Qing Hao
    • 1
  • Alan M. Walczak
    • 3
  • Xiao Hu
    • 2
  • Yiemeng Hoi
    • 4
  • Kenneth R. Hoffmann
    • 5
  • David S. Liebeskind
    • 1
  1. 1.Dept. of NeurologyUniversity of California, (UCLA)Los AngelesUSA
  2. 2.Dept. of Neurosurgery, NSDLUniversity of California, (UCLA)Los AngelesUSA
  3. 3.Imagination Software CorporationBuffaloUSA
  4. 4.Dept. of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada
  5. 5.Dept. of NeurosurgeryUniversity at BuffaloBuffaloUSA

Personalised recommendations