Facial Fraud Discrimination Using Detection and Classification

  • Inho Choi
  • Daijin Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6455)

Abstract

This paper proposes facial fraud discrimination using facial feature detection and classification based on the AdaBoost and a neural network. The proposed method detects the face, the two eyes, and the mouth by the AdaBoost detector. To classify detection results as either normal or abnormal eyes and mouths, we use a neural network. Using these results, we calculate the fraction of face images that contain normal eyes and mouths. These fractions are used for facial fraud detection by setting a threshold based on the cumulative density function of the Binomial distribution. The FRR and FAR of eye discrimination of our algorithm are 0.0486 and 0.0152, respectively. The FRR and FAR of mouth discrimination of our algorithm are 0.0702 and 0.0299, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Financial success for biometrics? Biometric Technology Today (2005)Google Scholar
  2. 2.
    Dong, W., Soh, Y.: Image-based fraud detection in automatic teller machine. International Journal of Computer Science and Network Security 6, 13–18 (2006)Google Scholar
  3. 3.
    Lin, D., Liu, M.: Face occlusion detection for automated teller machine surveillance. In: Chang, L.-W., Lie, W.-N. (eds.) PSIVT 2006. LNCS, vol. 4319, pp. 641–651. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Freund, Y., Schapire, R.: A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 14, 771–780 (1999)Google Scholar
  5. 5.
    Fröba, B., Ernst, A.: Face detection with the modified census transform. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, pp. 91–96 (2004)Google Scholar
  6. 6.
    Jun, B., Kim, D.: Robust real-time face detection using face certainty map. In: Proceedings of 2nd International Conference on Biometrics, pp. 29–38 (2007)Google Scholar
  7. 7.
    Choi, I., Kim, D.: Eye correction using correlation information. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 698–707. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Je, H., Kim, S., Jun, B., Kim, D., Kim, H., Sung, J., Bang, S.: Asian Face Image Database PF01. Database, Intelligent Multimedia Lab, Dept. of CSE, POSTECH (2001)Google Scholar
  10. 10.
    Lee, H., Park, S., Kang, B., Shin, J., Lee, J., Je, H., Jun, B., Kim, D.: The postech face database (pf07) and performance evaluation. In: Proceeding of 8th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 1–6 (2009)Google Scholar
  11. 11.
    Martinez, A., Benavente, R.: The AR Face Database. CVC Technical Report #24 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Inho Choi
    • 1
  • Daijin Kim
    • 1
  1. 1.Department of Computer Science and EngineeringPohang University of Science and Technology (POSTECH)Korea

Personalised recommendations