Surface Modeling of the Corpus Callosum from MRI Scans

  • Ahmed Farag
  • Shireen Elhabian
  • Mostafa Abdelrahman
  • James Graham
  • Aly Farag
  • Dongqing Chen
  • Manuel F. Casanova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6455)

Abstract

In this paper, the Bezier curve and surface are used to model the shape of the Corpus Callosum (CC) region from T1-weighted clinical MRI scans. We drive a closed form solution for the Bezier coefficients in 2D and 3D Euclidean spaces. The coefficients of the models are used for reconstruction of the CC contours and surfaces with varying degrees of accuracy, and constitute basis for discrimination between populations, and ways to enhance elastic registration of the CC. The discrimination ability of the Bezier curves and surfaces are evaluated against the Fourier Descriptors (FD) and Spherical Harmonics (SH) approaches.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clarke, J.M., Zaidel, E.: Anatomical-behavioral relationships: Corpus callosum mor-phometry and hemispheric specialization. Behavioural Brain Research 64(1-2), 185–202 (1994)CrossRefGoogle Scholar
  2. 2.
    Farag, A.: Shape Analysis of the Corpus Callosum of Autism and Normal Subject in Neuro Imaging, Master of Engineering, University of Louisville (August 2009)Google Scholar
  3. 3.
    Farag, A., Elhabian, S., Abdelrahman, M., Graham, J., Farag, A., Chen, D., Casanova, M.F.: Shape Modeling of the Corpus Callosum. In: IEEE Engineering in Medicine and Biology, EMBC 2010, Buenos Aires, Argentina, August 31-September 4 (2010)Google Scholar
  4. 4.
    O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge (September 1998)CrossRefMATHGoogle Scholar
  5. 5.
    Hardy, A., Steeb, W.: Mathematical tools in computer graphics with C + +  implementations. World Scientific, Singapore (May 2008)CrossRefMATHGoogle Scholar
  6. 6.
    Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane close curves. IEEE Trans. Computers C-21, 269–281 (1972)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Abdelmunim, H., Farag, A., Casanova, M.F.: Frequency-Domain Analysis of the Human Brain for Studies of Autism. In: Proc., 7th IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2007, Cairo, Egypt, December 15-18, pp. 1198–1203 (2007)Google Scholar
  8. 8.
    Chung, M.K., Wang, S., Dalton, K.M., Davidson, R.J., Robbins, S., Evans, A.C.: Tensor-based cortical morphometry via weighted spherical harmonic representation. IEEE Transactions On Medical Imaging 27(8) (August 2008)Google Scholar
  9. 9.
    Khairy, K., Howard, J.: Spherical harmonics-based parametric deconvolution of 3D surface images using bending energy minimization. Journal of Medical Image Analysis 12, 217–227 (2008)CrossRefGoogle Scholar
  10. 10.
    Goodall, C.: Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society B 53(2), 285–339 (1991)MathSciNetMATHGoogle Scholar
  11. 11.
    Edwards, G.J., Cootes, T.F., Taylor, C.J.: Advances in Active Appearance Models. In: Proc. International Conference on Computer Vision, ICCV 1999, pp. 137–142 (1999)Google Scholar
  12. 12.
    Matthews, I., Baker, S.: Active Appearance Models Revisited. International Journal of Computer Vision, 135–164 (2004)Google Scholar
  13. 13.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Chichester (2001)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ahmed Farag
    • 1
  • Shireen Elhabian
    • 1
  • Mostafa Abdelrahman
    • 1
  • James Graham
    • 1
  • Aly Farag
    • 1
  • Dongqing Chen
    • 1
  • Manuel F. Casanova
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of LouisvilleUSA
  2. 2.Department of PsychiatryUniversity of LouisvilleUSA

Personalised recommendations