Universal Seed Skin Segmentation

  • Rehanullah Khan
  • Allan Hanbury
  • Julian Stöttinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6454)


We present a principled approach for general skin segmentation using graph cuts. We present the idea of a highly adaptive universal seed thereby exploiting the positive training data only. We model the skin segmentation as a min-cut problem on a graph defined by the image color characteristics. The prior graph cuts based approaches for skin segmentation do not provide general skin detection when the information of foreground or background seeds is not available. We propose a concept for processing arbitrary images; using a universal seed to overcome the potential lack of successful seed detections thereby providing basis for general skin segmentation. The advantage of the proposed approach is that it is based on skin sampled training data only making it robust to unseen backgrounds. It exploits the spatial relationship among the neighboring skin pixels providing more accurate and stable skin blobs. Extensive evaluation on a dataset of 8991 images with annotated pixel-level ground truth show that the universal seed approach outperforms other state of the art approaches.


Color Space Face Detection Skin Detection Neighborhood Weight Skin Pixel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argyros, A.A., Lourakis, M.I.: Real-time tracking of multiple skin-colored objects with a possibly moving camera. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 368–379. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Cai, J., Goshtasby, A.: Detecting human faces in color images. Image and Vision Computing 18, 63–75 (1999)CrossRefGoogle Scholar
  3. 3.
    Cao, L.L., Li, X.L., Yu, N.H., Liu, Z.K.: Naked people retrieval based on adaboost learning. In: MLC, pp. 1133–1138 (2002)Google Scholar
  4. 4.
    Stöttinger, J., Hanbury, A., Liensberger, C., Khan, R.: Skin paths for contextual flagging adult videos. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009. LNCS, vol. 5876, pp. 303–314. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. PAMI 26, 1124–1137 (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Kakumanu, P., Makrogiannis, S., Bourbakis, N.: A survey of skin-color modeling and detection methods. PR 40, 1106–1122 (2007)zbMATHGoogle Scholar
  7. 7.
    Chai, D., Ngan, K.: Locating facial region of a head-and-shoulders color image. In: Int. Conf. Automatic Face and Gesture Recognition, pp. 124–129 (1998)Google Scholar
  8. 8.
    Sebe, N., Cohen, I., Huang, T.S., Gevers, T.: Skin detection: A Bayesian network approach. In: ICPR, pp. 903–906 (2004)Google Scholar
  9. 9.
    Phung, S.L., Chai, D., Bouzerdoum, A.: A universal and robust human skin color model using neural networks. In: IJCNN, pp. 2844–2849 (2001)Google Scholar
  10. 10.
    Pavlovic, V.: Boosted detection of objects and attributes. In: CVPR (2001)Google Scholar
  11. 11.
    Hsu, R., Abdel-Mottaleb, M., Jain, A.: Face detection in color images. PAMI 24, 696–706 (2002)CrossRefGoogle Scholar
  12. 12.
    Fleck, M.M., Forsyth, D.A., Bregler, C.: Finding naked people. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 593–602. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Lee, J.S., Kuo, Y.M., Chung, P.C., Chen, E.L.: Naked image detection based on adaptive and extensible skin color model. PR 40, 2261–2270 (2007)zbMATHGoogle Scholar
  14. 14.
    Yang, M., Ahuja, N.: Gaussian mixture model for human skin color and its application in image and video databases. In: SPIE, pp. 458–466 (1999)Google Scholar
  15. 15.
    Jones, M.J., Rehg, J.M.: Statistical color models with application to skin detection. IJCV 46, 81–96 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Phung, S.L., Bouzerdoum, A., Chai, D.: Skin segmentation using color pixel classification: Analysis and comparison. PAMI 27, 148–154 (2005)CrossRefGoogle Scholar
  17. 17.
    Peer, P., Kovac, J., Solina, F.: Human skin colour clustering for face detection. In: EUROCON, vol. 2, pp. 144–148 (2003)Google Scholar
  18. 18.
    Khan, R., Stöttinger, J., Kampel, M.: An adaptive multiple model approach for fast content-based skin detection in on-line videos. In: ACM MM, AREA workshop (2008)Google Scholar
  19. 19.
    Stokman, H., Gevers, T.: Selection and fusion of color models for image feature detection. IEEE Trans. Pattern Anal. Mach. Intell. 29, 371–381 (2007)CrossRefGoogle Scholar
  20. 20.
    Brown, D., Craw, I., Lewthwaite, J.: A SOM based approach to skin detection with application in real time systems. In: BMVC 2001, pp. 491–500 (2001)Google Scholar
  21. 21.
    Fu, Z., Yang, J., Hu, W., Tan, T.: Mixture clustering using multidimensional histograms for skin detection. In: ICPR, Washington, DC, USA, pp. 549–552 (2004)Google Scholar
  22. 22.
    Wong, K., Lam, K., Siu, W.: A robust scheme for live detection of human faces in color images. SPIC 18, 103–114 (2003)Google Scholar
  23. 23.
    Lee, J.Y., Suk-in, Y.: An elliptical boundary model for skin color detection. In: ISST, pp. 579–584 (2002)Google Scholar
  24. 24.
    Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: ICCV-WS 1999, vol. 1, pp. 105–112 (2001)Google Scholar
  25. 25.
    Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. In: SIGGRAPH, New York, NY, USA, pp. 303–308 (2004)Google Scholar
  26. 26.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI 22, 888–905 (2000)CrossRefGoogle Scholar
  27. 27.
    Malik, J., Belongie, S., Leung, T.K., Shi, J.: Contour and texture analysis for image segmentation. International Journal of Computer Vision 43, 7–27 (2001)CrossRefzbMATHGoogle Scholar
  28. 28.
    Micusík, B., Hanbury, A.: Automatic image segmentation by positioning a seed. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 468–480. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Hu, Z., Wang, G., Lin, X., Yan, H.: Skin segmentation based on graph cuts. Science and Technology 14, 478–486 (2009)Google Scholar
  30. 30.
    Micusík, B., Hanbury, A.: Steerable semi-automatic segmentation of textured images. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 35–44. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Khan, R., Hanbury, A., Stoettinger, J.: Skin detection: A random forest approach. In: ICIP (to appear, 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rehanullah Khan
    • 1
  • Allan Hanbury
    • 3
  • Julian Stöttinger
    • 1
    • 2
  1. 1.Computer Vision LabVienna University of TechnologyViennaAustria
  2. 2.Cog Vis Ltd.ViennaAustria
  3. 3.Information Retrieval FacilityViennaAustria

Personalised recommendations