Advertisement

A Region-Based Randomized Voting Scheme for Stereo Matching

  • Guillaume Gales
  • Alain Crouzil
  • Sylvie Chambon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6454)

Abstract

This paper presents a region-based stereo matching algorithm which uses a new method to select the final disparity: a random process computes for each pixel different approximations of its disparity relying on a surface model with different image segmentations and each found disparity gets a vote. At last, the final disparity is selected by estimating the mode of a density function built from these votes. We also advise how to choose the different parameters. Finally, an evaluation shows that the proposed method is efficient even at sub-pixel accuracy and is competitive with the state of the art.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scharstein, D., Szeliski, R.: A taxomomy and evaluation of dense two-frame stereo correspondence algorithms. IJVC 47, 7–42 (2002)zbMATHGoogle Scholar
  2. 2.
    Wang, Z.F., Zheng, Z.G.: A region based stereo matching algorithm using cooperative optimization. In: CVPR (2008)Google Scholar
  3. 3.
    Klaus, A., Sormann, M., Karner, K.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: ICPR, vol. 3, pp. 15–18 (2006)Google Scholar
  4. 4.
    Yang, Q., Wang, L., Yang, R., Stewénius, H., Nistér, D.: Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling. PAMI 31, 492–504 (2009)CrossRefGoogle Scholar
  5. 5.
    Bleyer, M., Rother, C., Kohli, P.: Surface stereo with soft segmentation. In: CVPR (2010)Google Scholar
  6. 6.
    Sun, J., Kang, S.B., Shum, H.Y.: Symmetric stereo matching for occlusion handling. In: CVPR, vol. 2, pp. 399–406 (2005)Google Scholar
  7. 7.
    Taguchi, Y., Wiburn, B., Zitnick, C.L.: Stereo reconstruction with mixed pixels using adaptive over-segmentation. In: CVPR (2008)Google Scholar
  8. 8.
    Yang, Q., Engels, C., Akbarzadeh, A.: Near real-time stereo for weakly-textured scenes. In: BMVC, vol. 1, pp. 924–931 (2008)Google Scholar
  9. 9.
    Hong, L., Chen, G.: Segment-based stereo matching using graph cuts. In: CVPR, vol. 1, pp. 74–81 (2004)Google Scholar
  10. 10.
    Lin, M.H., Tomasi, C.: Surfaces with occlusions from layered stereo. PAMI 26, 1073–1078 (2004)CrossRefGoogle Scholar
  11. 11.
    Comaniciu, D., Meer, P.: Robust analysis of feature spaces: color image segmentation. CVPR, 750–755 (1997)Google Scholar
  12. 12.
    Bleyer, M., Gelautz, M.: A layered stereo matching algorithm using image segmentation and global visibility constraints. ISPRS 59, 128–150 (2005)CrossRefGoogle Scholar
  13. 13.
    Chambon, S., Crouzil, A.: Dense matching using correlation: new measures that are robust near occlusions. In: BMVC, vol. 1, pp. 143–152 (2003)Google Scholar
  14. 14.
    Chen, H., Meer, P.: Robust computer vision through kernel density estimation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 236–250. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Guillaume Gales
    • 1
  • Alain Crouzil
    • 1
  • Sylvie Chambon
    • 2
  1. 1.IRIT, Institut de Recherche en Informatique de ToulouseToulouseFrance
  2. 2.LCPC, Laboratoire Central de Ponts et ChausséesNantesFrance

Personalised recommendations