Fitting High-Dimensional Copulae to Data

Part of the Springer Handbooks of Computational Statistics book series (SHCS)


This paper make an overview of the copula theory from a practical side. We consider different methods of copula estimation and different Goodness-of-Fit tests for model selection. In the GoF section we apply Kolmogorov-Smirnov and Cramer-von-Mises type tests and calculate power of these tests under different assumptions. Novating in this paper is that all the procedures are done in dimensions higher than two, and in comparison to other papers we consider not only simple Archimedean and Gaussian copulae but also Hierarchical Archimedean Copulae. Afterwards we provide an empirical part to support the theory.


Marginal Distribution Multivariate Distribution Copula Function Copula Model Gaussian Copula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support from the Deutsche Forschungsgemeinschaft through SFB 649 “Ökonomisches Risiko”, Humboldt-Universität zu Berlin is gratefully acknowledged.


  1. Barbe, P., Genest, C., Ghoudi, K., & Rémillard, B. (1996). On Kendalls’s process. Journal of Multivariate Analysis, 58, 197–229.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Breymann, W., Dias, A., & Embrechts, P. (2003). Dependence structures for multivariate high-frequency data in finance. Quantitative Finance, 1, 1–14.MathSciNetCrossRefGoogle Scholar
  3. Chen, S. X., & Huang, T. (2007). Nonparametric estimation of copula functions for dependence modeling. The Canadian Journal of Statistics, 35, 265–282.CrossRefzbMATHGoogle Scholar
  4. Chen, X., & Fan, Y. (2005). Pseudo-likelihood ratio tests for model selection in semiparametric multivariate copula models. The Canadian Journal of Statistics, 33(2), 389–414.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Chen, X., & Fan, Y. (2006). Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspesification. Journal of Econometrics, 135, 125–154.MathSciNetCrossRefGoogle Scholar
  6. Chen, X., Fan, Y., & Patton, A. (2004). Simple tests for models of dependence between multiple financial time series, with applications to U.S. equity returns and exchange rates. Discussion paper 483, Financial Markets Group, London School of Economics.Google Scholar
  7. Chen, X., Fan, Y., & Tsyrennikov, V. (2006). Efficient estimation of semiparametric multivariate copula models. Journal of the American Statistical Association, 101(475), 1228–1240.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Choros, B., Härdle, W., & Okhrin, O. (2009). CDO and HAC. SFB 649 Discussion Paper 2009-038, Sonderforschungsbereich 649, Humboldt Universität zu Berlin, Germany. Available at
  9. Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, 141–151.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Dall’Aglio, G. (1972). Fréchet classes and compatibility of distribution functions. Symp. Math., 9, 131–150.MathSciNetGoogle Scholar
  11. Dobrić, J., & Schmid, F. (2007). A goodness of fit test for copulas based on Rosenblatt’s transformation. Computational Statistics and Data Analysis, 51, 4633 – 4642.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Embrechts, P., McNeil, A. J., & Straumann, D. (1999). Correlation and dependence in risk management: Properties and pitfalls. RISK, 12(5), 69–71.Google Scholar
  13. Fama, E. F. (1965). The behavior of stock market prices. Journal of Business, 38(1), 34–105.CrossRefGoogle Scholar
  14. Fermanian, J.-D. (2005). Goodness-of-fit tests for copulas. Journal of Multivariate Analysis, 95(1), 119–152.MathSciNetCrossRefzbMATHGoogle Scholar
  15. Fermanian, J.-D., & Scaillet, O. (2003). Nonparametric estimation of copulas for time series. Journal of Risk, 5, 25–54.Google Scholar
  16. Filler, G., Odening, M., Okhrin, O., & Xu, W. (2010). On the systemic nature of weather risk. Agricultural Finance Review. 70(2), 267–284.CrossRefGoogle Scholar
  17. Frank, M. J. (1979). On the simultaneous associativity of f(x, y) and \(x + y - f(x,y)\). Aequationes Mathematicae, 19, 194–226.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Fréchet, M. (1951). Sur les tableaux de corrélation dont les marges sont donnés. Annales de l ’Université de Lyon, 4, 53–84.Google Scholar
  19. Genest, C., Ghoudi, K., & Rivest, L.-P. (1995). A semi-parametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika, 82, 543–552.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Genest, C., Quessy, J.-F., & Rémillard, B. (2006). Goodness-of-fit procedures for copula models based on the probability integral transformation. Scandinavian Journal of Statistics, 33, 337–366.CrossRefzbMATHGoogle Scholar
  21. Genest, C., & Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Annales de l’Institut Henri Poincaré: Probabilités et Statistiques, 44, 1096–1127.CrossRefzbMATHGoogle Scholar
  22. Genest, C., & Rivest, L.-P. (1989). A characterization of Gumbel family of extreme value distributions. Statistics and Probability Letters, 8, 207–211.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Genest, C., & Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88, 1034–1043.MathSciNetCrossRefzbMATHGoogle Scholar
  24. Giacomini, E., Härdle, W. K., & Spokoiny, V. (2009). Inhomogeneous dependence modeling with time-varying copulae. Journal of Business and Economic Statistics, 27(2), 224–234.MathSciNetCrossRefGoogle Scholar
  25. Gumbel, E. J. (1960). Distributions des valeurs extrêmes en plusieurs dimensions. Publ. Inst. Statist. Univ. Paris, 9, 171–173.MathSciNetzbMATHGoogle Scholar
  26. Härdle, W., Okhrin, O., & Okhrin, Y. (2010). Time varying hierarchical Archimedean copulae. submitted for publication.Google Scholar
  27. Härdle, W., & Simar, L. (2007). Applied Multivariate Statistical Analysis (2 ed.). Heidelberg: Springer.zbMATHGoogle Scholar
  28. Härdle, W. K., & Linton, O. (1994). Applied nonparametric methods. In R. Engle, & D. McFadden (Eds.) Handbook of Econometrics. North-Holland: Elsevier.Google Scholar
  29. Hennessy, D. A., & Lapan, H. E. (2002). The use of Archimedean copulas to model portfolio allocations. Mathematical Finance, 12, 143–154.MathSciNetCrossRefzbMATHGoogle Scholar
  30. Hoeffding, W. (1940). Masstabinvariante Korrelationstheorie. Schriften des Mathematischen Instituts und des Instituts für Angewandte Mathematik der Universität Berlin, 5(3), 179–233.Google Scholar
  31. Hoeffding, W. (1941). Masstabinvariante Korrelationsmasse für diskontinuierliche Verteilungen. Arkiv für matematischen Wirtschaften und Sozial forschung, 7, 49–70.Google Scholar
  32. Joe, H. (1997). Multivariate Models and Dependence Concepts. London: Chapman & Hall.CrossRefzbMATHGoogle Scholar
  33. Joe, H. (2005). Asymptotic efficiency of the two-stage estimation method for copula-based models. Journal of Multivariate Analisys, 94, 401–419.MathSciNetCrossRefzbMATHGoogle Scholar
  34. Jones, M. C. (1993). Simple boundary corrections for kernel density estimation. Statistic Computing, 3, 135–146.CrossRefGoogle Scholar
  35. Junker, M., & May, A. (2005). Measurement of aggregate risk with copulas. Econometrics Journal, 8, 428–454.MathSciNetCrossRefzbMATHGoogle Scholar
  36. Lee, T.-H., & Long, X. (2009). Copula-based multivariate garch model with uncorrelated dependent errors. Journal of Econometrics, 150(2), 207–218.MathSciNetCrossRefGoogle Scholar
  37. Lejeune, M., & Sarda, P. (1992). Smooth estimators of distribution and density functions. Computational Statistics & Data Analysis, 14, 457–471.MathSciNetCrossRefzbMATHGoogle Scholar
  38. Li, D. X. (2000). On default correlation: A copula function approach. The Journal of Fixed Income, 6, 43–54.CrossRefGoogle Scholar
  39. Mandelbrot, B. (1965). The variation of certain speculative prices. Journal of Business, 36(4), 34–105.Google Scholar
  40. Marshall, A. W., & Olkin, J. (1988). Families of multivariate distributions. Journal of the American Statistical Association, 83, 834–841.MathSciNetCrossRefzbMATHGoogle Scholar
  41. McNeil, A. J. (2008). Sampling nested Archimedean copulas. Journal Statistical Computation and Simulation, 78(6), 567–581.MathSciNetCrossRefzbMATHGoogle Scholar
  42. Nelsen, R. B. (2006). An Introduction to Copulas. New York: Springer.zbMATHGoogle Scholar
  43. Okhrin, O., Okhrin, Y., & Schmid, W. (2008). On the structure and estimation of hierarchical Archimedean copulas. under revision.Google Scholar
  44. Okhrin, O., Okhrin, Y., & Schmid, W. (2009). Properties of Hierarchical Archimedean Copulas. SFB 649 Discussion Paper 2009-014, Sonderforschungsbereich 649, Humboldt-Universität zu Berlin, Germany. Available at
  45. Patton, A. J. (2004). On the out-of-sample importance of skewness and asymmetric dependence for asset allocation. Journal of Financial Econometrics, 2, 130–168.CrossRefGoogle Scholar
  46. Renyi, A. (1970). Probability Theory. Amsterdam: North-Holland.Google Scholar
  47. Rosenblatt, M. (1952). Remarks on a multivariate transformation. The Annals of Mathematical Statistics, 23, 470–472.MathSciNetCrossRefzbMATHGoogle Scholar
  48. Savu, C., & Trede, M. (2004). Goodness-of-fit tests for parametric families of Archimedean copulas. Discussion paper, University of Muenster.Google Scholar
  49. Sklar, A. (1959). Fonctions dé repartition á n dimension et leurs marges. Publ. Inst. Stat. Univ. Paris, 8, 299–231.MathSciNetGoogle Scholar
  50. Wang, W., & Wells, M. (2000). Model selection and semiparametric inference for bivariate failure-time data. Journal of the American Statistical Association, 95, 62–76.MathSciNetCrossRefzbMATHGoogle Scholar
  51. Whelan, N. (2004). Sampling from Archimedean copulas. Quantitative Finance, 4, 339–352.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Ladislaus von Bortkiewitcz Chair of Statistics, C.A.S.E. – Center of Applied Statistics and EconomicsHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations