Advertisement

Nonparametric Estimation of Risk-Neutral Densities

  • Maria Grith
  • Wolfgang Karl Härdle
  • Melanie Schienle
Chapter
Part of the Springer Handbooks of Computational Statistics book series (SHCS)

Abstract

This chapter deals with nonparametric estimation of the risk neutral density. We present three different approaches which do not require parametric functional assumptions on the underlying asset price dynamics nor on the distributional form of the risk neutral density. The first estimator is a kernel smoother of the second derivative of call prices, while the second procedure applies kernel type smoothing in the implied volatility domain. In the conceptually different third approach we assume the existence of a stochastic discount factor (pricing kernel) which establishes the risk neutral density conditional on the physical measure of the underlying asset. Via direct series type estimation of the pricing kernel we can derive an estimate of the risk neutral density by solving a constrained optimization problem. The methods are compared using European call option prices. The focus of the presentation is on practical aspects such as appropriate choice of smoothing parameters in order to facilitate the application of the techniques.

Keywords

Option Price Implied Volatility Finite Sample Strike Price Optimal Bandwidth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aït-Sahalia, Y., & Duarte, J. (2003). Nonparametric option pricing under shape restrictions. Journal of Econometrics, 116(1), 9–47.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Aït-Sahalia, Y., & Lo, A. W. (1998). Nonparametric estimation of state-price densities implicit in financial asset prices. Journal of Finance, 53, 499–547.CrossRefGoogle Scholar
  3. Aït-Sahalia, Y., & Lo, A. W. (2000). Nonparametric risk management and implied risk aversion. Journal of Econometrics, 94, 9–51.CrossRefzbMATHGoogle Scholar
  4. Arrow, K. J. (1964). The role of securities in the optimal allocation of risk-bearing. Review of Economic Studies, 31, 91–96.CrossRefGoogle Scholar
  5. Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options. Review of Financial Studies, 9(1), 69–107.CrossRefGoogle Scholar
  6. Black, F., & Scholes, M. (1973). The Pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–654.CrossRefGoogle Scholar
  7. Breeden, D. T., & Litzenberger, R. H. (1978). Prices of state-contingent claims implicit in option prices. The Journal of Business, 51(4), 621–651.CrossRefGoogle Scholar
  8. Brown, D. P., & Jackwerth, J. C. (2004). The pricing kernel puzzle: Reconciling index option data and economic theory, Working Paper, University of Konstanz/University of Wisconsin.Google Scholar
  9. Campbell, J., Lo, A., & McKinlay, A. (1997). The econometrics of financial markets. NJ: Princeton University Press.zbMATHGoogle Scholar
  10. Craven, P., & Wahba, G. (1979). Smoothing noisy data with spline functions, Numerische Mathematik, 31, 377–403MathSciNetCrossRefzbMATHGoogle Scholar
  11. Debreu, G. (1959). Theory of value: An axiomatic analysis of economic equilibrium. New Haven: Yale University Press.zbMATHGoogle Scholar
  12. Engle, R. F., & Rosenberg, J. V. (2002). Empirical pricing kernels. Journal of Financial Economics, 64, 341–372.CrossRefGoogle Scholar
  13. Fan, J., & Gijbels, I. (1996). Local polynomial modelling and its applications. London: Chapman and Hall.zbMATHGoogle Scholar
  14. Fengler, M. R. (2005). Semiparametric modeling of implied volatility. Berlin: SpringerzbMATHGoogle Scholar
  15. Grith, M., Härdle, W., & Park, J. (2010). Shape invariant modelling pricing kernels and risk aversion. Resubmitted to Journal of Financial Econometrics on 17 December 2010Google Scholar
  16. Härdle, W. (1990). Applied nonparametric regression. Econometric Society Monographs No. 19. London: Cambridge University PressGoogle Scholar
  17. Härdle, W., & Hlavka, Z. (2009). Dynamics of state price densities. Journal of Econometrics, 150(1), 1–15.MathSciNetCrossRefGoogle Scholar
  18. Härdle, W., Müller, M., Sperlich, S., & Werwatz, A. (2004). Nonparametric and semiparametric models. Heidelberg: Springer.CrossRefzbMATHGoogle Scholar
  19. Härdle, W., Okhrin, Y., & Wang, W. (2009). Uniform confidence for pricing kernels. SFB649DP2010-003. Econometric Theory (Submitted).Google Scholar
  20. Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2), 327–343.CrossRefGoogle Scholar
  21. Ingersoll, J.E. (1987). Theory of financial decision making. Rowman & LittlefieldGoogle Scholar
  22. Jackwerth, J. C. (2000). Recovering risk aversion from option prices and realized returns. Review of Financial Studies, 13(2), 433–451.CrossRefGoogle Scholar
  23. Li, K. C. (1987). Asymptotic optimality for c p, c l, cross-validation and generalized cross-validation: Discrete index set. Annals of Statistics, 15, 958–975.MathSciNetCrossRefzbMATHGoogle Scholar
  24. Li, Q., & Racine, J. S. (2007). Nonparametric econometrics: Theory and practice. NJ: Princeton University Press.zbMATHGoogle Scholar
  25. Linton, O., & Nielsen, J. P. (1995). A kernel method of estimating structured nonparametric regression based on marginal integration. Biometrika, 82(1), 93–100.MathSciNetCrossRefzbMATHGoogle Scholar
  26. Lucas, R. E. (1978). Asset prices in an exchange economy. Econometrica, 46, 1429–1445.MathSciNetCrossRefzbMATHGoogle Scholar
  27. Mallows, C. L. (1973). Some comments on c p. Technometrics, 15, 661–675.zbMATHGoogle Scholar
  28. Mammen, E., Linton, O., & Nielsen, J. (1999). The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Annals of Statistics, 27(5), 1443–1490.MathSciNetzbMATHGoogle Scholar
  29. Marron, J. S., & Nolan, D. (1988). Canonical kernels for density estimation. Statistics and Probability Letters, 7(3), 195–199.MathSciNetCrossRefzbMATHGoogle Scholar
  30. Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics, 4(1), 141–183.MathSciNetCrossRefGoogle Scholar
  31. R. Merton (1976) Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3, 125–183.CrossRefzbMATHGoogle Scholar
  32. Müller, H. G. (1988). Nonparametric regression analysis of longitudinal data. Lecture Notes in Statistics (Vol. 46). New York: Springer.Google Scholar
  33. Newey, W. K. (1997). Convergence rates and asymptotic normality for series estimators. Journal of Econometrics, 79(1), 147–168.MathSciNetCrossRefzbMATHGoogle Scholar
  34. Rookley, C. (1997). Fully exploiting the information content of intra day option quotes: Applications in option pricing and risk management, Working paper, University of Arizona.Google Scholar
  35. Rubinstein. (1976). The valuation of uncertain income streams and the pricing of options. Bell Journal of Economics, 7(2), 407–425.Google Scholar
  36. Ruppert, D., & Wand, M. P. (1994). Multivariate locally weighted least squares regression. Annals of Statistics, 22(3), 1346–1370.MathSciNetCrossRefzbMATHGoogle Scholar
  37. Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. J. Roy. Statist. Soc. Ser. B, 36, 111–147.MathSciNetzbMATHGoogle Scholar
  38. Wahba, G. (1985). A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Annals of Statistics, 13(4), 1378–1402.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maria Grith
    • 1
  • Wolfgang Karl Härdle
    • 2
    • 3
  • Melanie Schienle
    • 4
  1. 1.Ladislaus von Bortkiewicz Chair of StatisticsHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Ladislaus von Bortkiewicz Chair of Statistics and CASE – Center for Applied Statistics and EconomicsHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Graduate Institute of Statistics, CDA – Centre for Complex Data AnalysisNational Central UniversityJhongli City, Taoyuan CountyTaiwan (R.O.C.)
  4. 4.Chair of Econometrics and CASE – Center for Applied Statistics and EconomicsHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations