Can I Help You?

A Spatial Attention System for a Receptionist Robot
  • Patrick Holthaus
  • Ingo Lütkebohle
  • Marc Hanheide
  • Sven Wachsmuth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6414)


Social interaction between humans takes place in the spatial dimension on a daily basis. We occupy space for ourselves and respect the dynamics of spaces that are occupied by others. In human-robot interaction, the focus has been on other topics so far. Therefore, this work applies a spatial model to a humanoid robot and implements an attention system that is connected to it. The resulting behaviors have been verified in an on-line video study. The questionnaire revealed that these behaviors are applicable and result in a robot that has been perceived as more interested in the human and shows its attention and intentions to a higher degree.


Humanoid Robot Random Movement Attention System Robot Experience Human Interactive Communication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breazeal, C., Scassellati, B.: How to build robots that make friends and influence people. In: Intelligent Robot Systems (IROS), Kyonjiu, Korea, pp. 858–863 (1999)Google Scholar
  2. 2.
    Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robotics and Autonomous Systems 42(3), 143–166 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Lütkebohle, I., Peltason, J., Schillingmann, L., Elbrechter, C., Wrede, B., Wachsmuth, S., Haschke, R.: The curious robot - structuring interactive robot learning. In: International Conference on Robotics and Automation, Kobe, Japan. IEEE, Los Alamitos (2009)Google Scholar
  4. 4.
    Hall, E.T.: Proxemics. Current Anthropology 9(2/3), 83 (1968)CrossRefGoogle Scholar
  5. 5.
    Takayama, L., Pantofaru, C.: Inuences on proxemic behaviors in human-robot interaction. In: Intelligent Robots and Systems (IROS), St. Louis, MO (2009)Google Scholar
  6. 6.
    Syrdal, D.S., Dautenhahn, K., Walters, M.L., Koay, K.L.: Sharing spaces with robots in a home scenario anthropomorphic attributions and their effect on proxemic expectations and evaluations in a live HRI trial. In: Proc. AAAI Fall 2008 Symposium AI in Eldercare: New Solutions to Old Problems, Washington, DC, USA (2008)Google Scholar
  7. 7.
    van Oosterhout, T., Visser, A.: A visual method for robot proxemics measurements. In: Proceedings of Metrics for Human-Robot Interaction: A Workshop at the Third ACM/IEEE International Conference on Human-Robot Interaction (HRI 2008), pp. 61–68. University of Hertfordshire (2008)Google Scholar
  8. 8.
    Kirby, R., Simmons, R., Forlizzi, J.: Companion: A constraint optimizing method for person-acceptable navigation. In: IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 607–612 (September 2009)Google Scholar
  9. 9.
    Pacchierotti, E., Christensen, H.I., Jensfelt, P.: Evaluation of passing distance for social robots. In: IEEE Workshop on Robot and Human Interactive Communication (ROMAN), Hartfordshire (2006)Google Scholar
  10. 10.
    Pitsch, K., Kuzuoka, H., Suzuki, Y., Lu, P., Heath, C., Yamazaki, K., Yamazaki, A., Kuno, Y.: The rst ve seconds: Contigent step-wise entry as a means to secure sustained engagement in human-robot-interaction. In: International Symposium on Robot and Human Interactive Communication, Toyama, Japan (September 2009)Google Scholar
  11. 11.
    Muhl, C., Nagai, Y.: Does disturbance discourage people from communicating with a robot? In: The 16th IEEE International Symposium on Robot and Human Interactive Communication, Jeju, Korea (2007)Google Scholar
  12. 12.
    Beuter, N., Spexard, T., Lütkebohle, I., Peltason, J., Kummert, F.: Where is this? - gesture based multimodal interaction with an anthropomorphic robot. In: International Conference on Humanoid Robots, Daejeon, Korea. IEEE-RAS (2008)Google Scholar
  13. 13.
    Hackel, M., Schwope, M., Fritsch, J., Wrede, B., Sagerer, G.: Designing a sociable humanoid robot for interdisciplinary research. Advanced Robotics 20(11), 1219–1235 (2006)CrossRefGoogle Scholar
  14. 14.
    Lütkebohle, I., Hegel, F., Schulz, S., Hackel, M., Wrede, B., Wachsmuth, S., Sagerer, G.: The bielefeld anthropomorphic robot head “flobi“. In: IEEE International Conference on Robotics and Automation, Anchorage, Alaska. IEEE, Los Alamitos (2010)Google Scholar
  15. 15.
    Hegel, F.: Gestalterisch konstruktiver Entwurf eines sozialen Roboters. PhD thesis, Bielefeld University (2010)Google Scholar
  16. 16.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 511–518 (2001)Google Scholar
  17. 17.
    Kendon, A.: Some functions of gaze-direction in social interaction. Acta Psychologica 26, 22–63 (1967)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Patrick Holthaus
    • 1
  • Ingo Lütkebohle
    • 1
  • Marc Hanheide
    • 2
  • Sven Wachsmuth
    • 1
  1. 1.Applied Informatics, Faculty of TechnologyBielefeld UniversityGermany
  2. 2.School of Computer ScienceUniversity of BirminghamEngland

Personalised recommendations