Advertisement

State of the Art

  • Matthias HeydtEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The aim of this thesis is to study the exploration behavior of microorganisms and to correlate the observed behavior with the known antifouling performance of surfaces. In the following, the existing knowledge in literature important for the scope of this thesis is reviewed. First, the used organism is described followed by a detailed description of surface cues altering the observed settlement. Afterwards the general swimming properties of microorganisms are explained in detail. Finally the results of this thesis are compared to other 3D motion studies published in literature.

Keywords

Contact Angle Female Gamete Antifouling Coating Spore Body Settlement Amount 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    EC Framework 6 Integrated Project “AMBIO”—Advanced Nanostructured Surfaces for the Control of Biofouling, http://www.ambio.bham.ac.uk. Accessed 23 Nov 2009
  2. 2.
    M.E. Callow, J.A. Callow, J.D. Pickett-Heaps, R. Wetherbee, J. Phycol. 33(6), 938–947 (1997)CrossRefGoogle Scholar
  3. 3.
    S. Miyamura, Cytologia 69(2), 197–201 (2004)CrossRefGoogle Scholar
  4. 4.
    G.L. Wheeler, K. Tait, A. Taylor, C. Brownlee, I. Joint, Plant Cell Environ. 29(4), 608–618 (2006)CrossRefGoogle Scholar
  5. 5.
    J.A. Callow, M.E. Callow, Biofilms, 1st edn. (Springer-Verlag, Berlin, Heidelberg, 2006)Google Scholar
  6. 6.
    M.E. Callow, J.A. Callow, Biologist 49(1), 1–5 (2002)Google Scholar
  7. 7.
    I. Inouye, T. Hori, Protoplasma 164(1–3), 54–69 (1991)CrossRefGoogle Scholar
  8. 8.
    M.P. Schultz, J.A. Finlay, M.E. Callow, J.A. Callow, Biofouling 15(4), 243–251 (2000)CrossRefGoogle Scholar
  9. 9.
    A. Statz, J. Finlay, J. Dalsin, M. Callow, J.A. Callow, P.B. Messersmith, Biofouling 22(6), 391–399 (2006)CrossRefGoogle Scholar
  10. 10.
    L.K. Ista, M.E. Callow, J.A. Finlay, S.E. Coleman, A.C. Nolasco, R.H. Simons, J.A. Callow, G.P. Lopez, Appl. Environ. Microbiol. 70(7), 4151–4157 (2004)CrossRefGoogle Scholar
  11. 11.
    J.A. Finlay, M.E. Callow, L.K. Ista, G.P. Lopez, J.A. Callow, Integr. Comp. Biol. 42(6), 1116–1122 (2002)CrossRefGoogle Scholar
  12. 12.
    M.E. Callow, J.A. Callow, L.K. Ista, S.E. Coleman, A.C. Nolasco, G.P. Lopez, Appl. Environ. Microbiol. 66(8), 3249–3254 (2000)CrossRefGoogle Scholar
  13. 13.
    S. Schilp, A. Kueller, A. Rosenhahn, M. Grunze, M.E. Pettitt, M.E. Callow, J.A. Callow, Biointerphases 2(4), 143–150 (2007)CrossRefGoogle Scholar
  14. 14.
    J.A. Finlay, S. Krishnan, M.E. Callow, J.A. Callow, R. Dong, N. Asgill, K. Wong, E.J. Kramer, C.K. Ober, Langmuir 24(2), 503–510 (2008)CrossRefGoogle Scholar
  15. 15.
    M.K. Chaudhury, S. Daniel, M.E. Callow, J.A. Callow, J.A. Finlay, Biointerphases 1(1), 18–21 (2006)CrossRefGoogle Scholar
  16. 16.
    M. Mrksich, G.M. Whitesides, Annu. Rev. Biophys. Biomol. Struct. 25, 55–78 (1996)CrossRefGoogle Scholar
  17. 17.
    J.H. Harris, Poly (Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications (Plenum Press, New York, 1992)Google Scholar
  18. 18.
    S. Herrwerth, W. Eck, S. Reinhardt, M. Grunze, J. Am. Chem. Soc. 125(31), 9359–9366 (2003)CrossRefGoogle Scholar
  19. 19.
    S. Schilp, A. Rosenhahn, M.E. Pettitt, J. Bowen, M.E. Callow, J.A. Callow, M. Grunze, Langmuir 25(17), 10077–10082 (2009)CrossRefGoogle Scholar
  20. 20.
    S. Schilp, Self-assembled Monolayers and Nanostructured Surfaces as Tools to Design Antifouling Surfaces, Ph. D. Dissertation, Ruprecht-Karls-University of Heidelberg, Heidelberg, 2009Google Scholar
  21. 21.
    J. Bowen, M.E. Pettitt, K. Kendall, G.J. Leggett, J.A. Preece, M.E. Callow, J.A. Callow, J. R. Soc. Interface 4(14), 473–477 (2007)CrossRefGoogle Scholar
  22. 22.
    A. Rosenhahn, J.A. Finlay, M.E. Pettit, A. Ward, W. Wirges, R. Gerhard, M.E. Callow, M. Grunze, J.A. Callow, Biointerphases 4(1), 7–11 (2009)CrossRefGoogle Scholar
  23. 23.
    L. Hoipkemeier-Wilson, J.F. Schumacher, M.L. Carman, A. Gibson, A. Feinberg, M.E. Callow, J.A. Finlay, J.A. Callow, A.B. Brennan, Biofouling 20(1), 53–63 (2004)CrossRefGoogle Scholar
  24. 24.
    M.E. Callow, A.R. Jennings, A.B. Brennan, C.E. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney, J.A. Callow, Biofouling 18(3), 237–245 (2002)CrossRefGoogle Scholar
  25. 25.
    W.R. Wilkerson, C.A. Seegert, A.W. Feinberg, L.C. Zhao, J.A. Callow, M.E. Callow, A.B. Brennan, Polymer Pre. 42(1), 147–148 (2001)Google Scholar
  26. 26.
    A.J. Scardino, J. Guenther, R. de Nys, Biofouling 24(1), 45–53 (2008)CrossRefGoogle Scholar
  27. 27.
    M.L. Carman, T.G. Estes, A.W. Feinberg, J.F. Schumacher, W. Wilkerson, L.H. Wilson, M.E. Callow, J.A. Callow, A.B. Brennan, Biofouling 22(1), 11–21 (2006)CrossRefGoogle Scholar
  28. 28.
    J.F. Schumacher, C.J. Long, M.E. Callow, J.A. Finlay, J.A. Callow, A.B. Brennan, Langmuir 24(9), 4931–4937 (2008)CrossRefGoogle Scholar
  29. 29.
    J.F. Schumacher, M.L. Carman, T.G. Estes, A.W. Feinberg, L.H. Wilson, M.E. Callow, J.A. Callow, J.A. Finlay, A.B. Brennan, Biofouling 23(1), 55–62 (2007)CrossRefGoogle Scholar
  30. 30.
    J. Genzer, K. Efimenko, Biofouling 22(5), 339–360 (2006)CrossRefGoogle Scholar
  31. 31.
    A.J. Scardino, D. Hudleston, Z. Peng, N.A. Paul, R. de Nys, Biofouling 25(1), 83–93 (2009)CrossRefGoogle Scholar
  32. 32.
    K. Efimenko, J.A. Finlay, M.E. Callow, J.A. Callow, J. Genzer, ACS Appl. Mater. Interfaces 1(5), 1031–1040 (2009)CrossRefGoogle Scholar
  33. 33.
    M.H. Dickinson, C.T. Farley, R.J. Full, M.A.R. Koehl, R. Kram, S. Lehman, Science 288(5463), 100–106 (2000)CrossRefGoogle Scholar
  34. 34.
    J.M.V. Rayner, J. Exp. Biol. 80(1), 17–54 (1979)Google Scholar
  35. 35.
    J.T. Bonner, Nat Hist 115(9), 54–59 (2006)Google Scholar
  36. 36.
    K.A. Kermack, Exp. Biol. 25(3), 237–240 (1948)Google Scholar
  37. 37.
    E.M. Purcell, Am. J. Phys. 45(1), 3–11 (1977)CrossRefGoogle Scholar
  38. 38.
    M. Ramia, D.L. Tullock, N. Phanthien, Biophys. J. 65(2), 755–778 (1993)CrossRefGoogle Scholar
  39. 39.
    R.J. Charlson, J.E. Lovelock, M.O. Andreae, S.G. Warren, Nature 326(6114), 655–661 (1987)CrossRefGoogle Scholar
  40. 40.
    M.A.S. Vigeant, R.M. Ford, M. Wagner, L.K. Tamm, Appl. Environ. Microbiol. 68(6), 2794–2801 (2002)CrossRefGoogle Scholar
  41. 41.
    R.M. Harshey, Annu. Rev. Microbiol. 57, 249–273 (2003)CrossRefGoogle Scholar
  42. 42.
    K.M. Ottemann, J.F. Miller, Mol. Microbiol. 24(6), 1109–1117 (1997)CrossRefGoogle Scholar
  43. 43.
    L.A. Pratt, R. Kolter, Mol. Microbiol. 30(2), 285–293 (1998)CrossRefGoogle Scholar
  44. 44.
    H.C. Berg, D.A. Brown, Nature 239, 500 (1972)CrossRefGoogle Scholar
  45. 45.
    W.R. DiLuzio, L. Turner, M. Mayer, P. Garstecki, D.B. Weibel, H.C. Berg, G.M. Whitesides, Nature 435(7046), 1271–1274 (2005)CrossRefGoogle Scholar
  46. 46.
    E. Lauga, W.R. DiLuzio, G.M. Whitesides, H.A. Stone, Biophys. J. 90(2), 400–412 (2006)CrossRefGoogle Scholar
  47. 47.
    A. Franklin, Am. J. Phys. 44(6), 529–545 (1976)CrossRefGoogle Scholar
  48. 48.
    T.J. Pedley, J.O. Kessler, Annu. Rev. Fluid Mech. 24, 313–358 (1992)CrossRefGoogle Scholar
  49. 49.
    C. Brennen, H. Winet, Annu. Rev. Fluid Mech. 9, 339–398 (1977)CrossRefGoogle Scholar
  50. 50.
    U. Rüffler, W. Nultsch, Cell Motil. Cytoskeleton 5(3), 251–263 (1985)CrossRefGoogle Scholar
  51. 51.
    U. Rueffer, W. Nultsch, Cell Motil. Cytoskeleton 7(1), 87–93 (1987)CrossRefGoogle Scholar
  52. 52.
    U. Rüffer, W. Nultsch, Bot. Acta. 108(3), 255–265 (1995)Google Scholar
  53. 53.
    K.A. Johnson, Bioessays 17(10), 847–854 (1995)CrossRefGoogle Scholar
  54. 54.
    C.D. Silflow, P.A. Lefebvre, Plant Physiol. 127(4), 1500–1507 (2001)CrossRefGoogle Scholar
  55. 55.
    Wikipedia, Web Page, Escherichia coli, http://en.wikipedia.org/wiki/Ecoli. Accessed 12/2/2008
  56. 56.
    E.M. Purcell, Proc. Natl. Acad. Sci. USA 94(21), 11307–11311 (1997)CrossRefGoogle Scholar
  57. 57.
    H.C. Berg, Phys. Today 53(1), 24–29 (2000)CrossRefGoogle Scholar
  58. 58.
    J.E. Segal, S.M. Block, H.C. Berg, Proc. Natl. Acad. Sci. USA 83, 8987–8991 (1986)CrossRefGoogle Scholar
  59. 59.
    H.C. Berg, Annu. Rev. Biochem. 72, 19–54 (2003)CrossRefGoogle Scholar
  60. 60.
    w. Ludwig, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 13(3), 397–504 (1930)Google Scholar
  61. 61.
    J. Lighthill, SIAM Rev. 18(2), 161–230 (1976)CrossRefGoogle Scholar
  62. 62.
    J. Lighthill, J. Eng. Math. 30(1–2), 25–34 (1996)CrossRefGoogle Scholar
  63. 63.
    J. Lighthill, J. Eng. Math. 30(1–2), 35–78 (1996)CrossRefGoogle Scholar
  64. 64.
    J.E. Avron, O. Gat, O. Kenneth, Phys. Rev. Lett. 93(18), 4 (2004)CrossRefGoogle Scholar
  65. 65.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72(9), 36 (2009)CrossRefGoogle Scholar
  66. 66.
    L. Rothschild, Nature 198(4886), 1221–1222 (1963)CrossRefGoogle Scholar
  67. 67.
    A.P. Berke, L. Turner, H.C. Berg, E. Lauga, Phys. Rev. Lett. 101, 3–038102(1)–(4) (2008)CrossRefGoogle Scholar
  68. 68.
    J.P. Hernandez-Ortiz, C.G. Stoltz, M.D. Graham, Phys. Rev. Lett. 95(20), 204501 (2005)CrossRefGoogle Scholar
  69. 69.
    L.J. Fauci, A. McDonald, Bull. Math. Biol. 57(5), 679–699 (1995)Google Scholar
  70. 70.
    H. Brenner, Chem. Eng. Sci. 16(3–4), 143–339 (1961)Google Scholar
  71. 71.
    S.A. Biondi, J.A. Quinn, H. Goldfine, AIChE J. 44(8), 1923–1929 (1998)CrossRefGoogle Scholar
  72. 72.
    Y. Magariyama, M. Ichiba, K. Nakata, K. Baba, T. Ohtani, S. Kudo, T. Goto, Biophys. J. 88(5), 3648–3658 (2005)CrossRefGoogle Scholar
  73. 73.
    K. Drescher, K.C. Leptos, I. Tuval, T. Ishikawa, T.J. Pedley, R.E. Goldstein, Phys. Rev. Lett. 102(16), 168101 (2009)CrossRefGoogle Scholar
  74. 74.
    P.D. Frymier, R.M. Ford, H.C. Berg, P.T. Cummings, Proc. Natl. Acad. Sci. USA 92(13), 6195–6199 (1995)CrossRefGoogle Scholar
  75. 75.
    H.C. Berg, L. Turner, Biophys. J. 58(4), 919–930 (1990)CrossRefGoogle Scholar
  76. 76.
    M.A.S. Vigeant, R.M. Ford, Appl. Environ. Microbiol. 63(9), 3474–3479 (1997)Google Scholar
  77. 77.
    J. Lyklema, W. Norde, A.J.B. Zehnder, Microb. Ecol. 17(1), 1–15 (1989)CrossRefGoogle Scholar
  78. 78.
    J. Palmer, S. Flint, J. Brooks, J. Ind. Microbiol. Biotechnol. 34(9), 577–588 (2007)CrossRefGoogle Scholar
  79. 79.
    S.H. Larsen, R.W. Reader, E.N. Kort, W. Tso, J. Adler, Nature 249(5452), 74–77 (1974)CrossRefGoogle Scholar
  80. 80.
    M. Silverman, M. Simon, Nature 294(5452), 73–74 (1974)CrossRefGoogle Scholar
  81. 81.
    M.C.M. van Loosdrecht, J. Lyklema, W. Norde, A.J.B. Zehnder, Microbiol. Rev. 54(1), 75–87 (1990)Google Scholar
  82. 82.
    L. Marcotte, A. Tabrizian, IRBM 29(2–3), 77–88 (2008)CrossRefGoogle Scholar
  83. 83.
    R. Srinivasan, P.S. Stewart, T. Griebe, C.I. Chen, X.M. Xu, Biotechnol. Bioeng. 46(6), 553–560 (1995)CrossRefGoogle Scholar
  84. 84.
    S.Y. Hou, E.A. Burton, K.A. Simon, D. Blodgett, Y.Y. Luk, D.C. Ren, Appl. Environ. Microbiol. 73(13), 4300–4307 (2007)CrossRefGoogle Scholar
  85. 85.
    H.C. Berg, Rev. Sci. Instrum. 42(6), 869–871 (1971)CrossRefGoogle Scholar
  86. 86.
    H.C. Berg, Random Walks in Biology (Princeton University Press, Princeton, 1993)Google Scholar
  87. 87.
    S.A. Baba, S. Inomata, M. Ooya, Y. Mogami, A. Izumikurotani, Rev. Sci. Instrum. 62(2), 540–541 (1991)CrossRefGoogle Scholar
  88. 88.
    K. Drescher, K.C. Leptos, R.E. Goldstein, Rev. Sci. Instrum. 80(1), 7 (2009)CrossRefGoogle Scholar
  89. 89.
    E.R. Weeks, J.C. Crocker, A.C. Levitt, A. Schofield, D.A. Weitz, Science 287(5453), 627–631 (2000)CrossRefGoogle Scholar
  90. 90.
    J.G. Santiago, S.T. Wereley, C.D. Meinhart, D.J. Beebe, R.J. Adrian, Exp. Fluids 25(4), 316–319 (1998)CrossRefGoogle Scholar
  91. 91.
    W. Xu, M.H. Jericho, H.J. Kreuzer, I.A. Meinertzhagen, Opt. Lett. 28(3), 164–166 (2003)CrossRefGoogle Scholar
  92. 92.
    N.I. Lewis, W.B. Xu, S.K. Jericho, H.J. Kreuzer, M.H. Jericho, A.D. Cembella, Phycologia 45(1), 61–70 (2006)CrossRefGoogle Scholar
  93. 93.
    M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M.E. Callow, J.A. Callow, J. Adhes. 83(5), 417–430 (2007)CrossRefGoogle Scholar
  94. 94.
    H.Y. Sun, D.C. Hendry, M.A. Player, J. Watson, IEEE J. Ocean. Eng. 32(2), 373–382 (2007)CrossRefGoogle Scholar
  95. 95.
    S.K. Jericho, J. Garcia-Sucerquia, W.B. Xu, M.H. Jericho, H.J. Kreuzer, Rev. Sci. Instrum. 77, 4–43706 (2006)CrossRefGoogle Scholar
  96. 96.
    J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, A.R. Place, Proc. Natl. Acad. Sci. USA 104(44), 17512–17517 (2007)CrossRefGoogle Scholar
  97. 97.
    J. Sheng, E. Malkiel, J. Katz, Exp. Fluids 45(6), 1023–1035 (2008)CrossRefGoogle Scholar
  98. 98.
    J. Garcia-Sucerquia, W. Xu, S.K. Jericho, M.H. Jericho, H.J. Kreuzer, Optik 119(9), 419–423 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Applied Physical ChemistryUniversity of HeidelbergHeidelbergGermany

Personalised recommendations