Advertisement

Neue Infektionserreger mit pandemischem Potential: Ursache – Verbreitung – Management

  • Sebastian Grund
  • Hartmut Hengel
Chapter
  • 6.2k Downloads

Zusammenfassung

Die im vergangenen Jahrhundert errungenen Erfolge bei der Reduzierung der Mortalität durch Infektionskrankheiten können nicht verdecken, dass beständig neue Infektionskrankheiten mit weltweiter Verbreitung auftreten. Diese gehen entweder auf „neue“ Erreger zurück („emerging diseases“), oder sind durch bekannte Erreger bedingt, die neue Verbreitungsgebiete erobert haben. Bei der Expansion der endemischen Zirkulation von Infektionserregern spielen anthropogene Faktoren eine entscheidende Rolle, und eine große Zahl völlig unterschiedlicher Erreger kommt für solche Geschehen in Betracht (Kaufmann 2010).

Literatur

  1. 1.
    Burnet FM, Lind PE (1952) Studies on recombination with influenza viruses in the chick embryo. III. Reciprocal genetic interaction between two influenza virus strains. Aust J Exp Biol Med Sci 30:469–477PubMedCrossRefGoogle Scholar
  2. 2.
    Chim SS, Tsui SK, Chan KC, Au TC, Hung EC, Tong YK, Chiu RW, Ng, EK, Chan PK, Chu CM, Sung JJ, Tam JS, Fung KP, Waye MM, Lee CY, Yuen KY, Lo YM (2003) Genomic characterisation of the severe acute respiratory syndrome coronavirus of Amoy Gardens outbreak in Hong Kong. Lancet 362:1807–1808PubMedCrossRefGoogle Scholar
  3. 3.
    Christian MD, Poutanen SM, Loutfy MR, Muller MP, Low DE (2004) Severe acute respiratory syndrome. Clin Infect Dis 38:1420–1427PubMedCrossRefGoogle Scholar
  4. 4.
    Claas EC, Osterhaus AD, van Beek R, de Jong JC, Rimmelzwaan GF, Senne DA, Krauss S, Shortridge KF, Webster RG (1998) Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351:472–477PubMedCrossRefGoogle Scholar
  5. 5.
    Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom S, Garten RJ, Gubareva LV, Xu X, Bridges CB, Uyeki TM (2009) Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 360:2605–2615PubMedCrossRefGoogle Scholar
  6. 6.
    Drosten C, Gunther S, Preiser W, Van Der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976PubMedCrossRefGoogle Scholar
  7. 7.
    Epidemiologisches Bulletin 41 (2009) Epidemiologisches Bulletin 41.Google Scholar
  8. 8.
    Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu X, Skepner E, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith CB, Emery SL, Hillman MJ, Rivailler P, Smagala J, de GM, Burke DF, Fouchier RA, Pappas C, Alpuche-Aranda CM, Lopez-Gatell H, Olivera H, Lopez I, Myers CA, Faix D, Blair PJ, Yu C, Keene KM, Dotson PD, Jr Boxrud, D Sambol, AR Abid, SH St, GK, Bannerman T, Moore AL, Stringer DJ, Blevins P, Demmler-Harrison GJ, Ginsberg M, Kriner P, Waterman, S Smole, S Guevara, HF Belongia, EA Clark, PA Beatrice, ST Donis, R Katz, J Finelli, L Bridges, CB Shaw, M Jernigan, DB, Uyeki TM, Smith DJ, Klimov AI, Cox NJ (2009) Antigenic and genetic characteristics of swineorigin 2009 A(H1N1) influenza viruses circulating in humans. Science 325:197–201PubMedCrossRefGoogle Scholar
  9. 9.
    Ginsberg M, Hopkins J, Maroufi A (2010) Swine Influenza A (H1N1) Infection in Two Children - Southern California, March–April 2009. MMWR 58:400–402Google Scholar
  10. 10.
    Hancock K, Veguilla V, Lu X, Zhong W, Butler EN, Sun H, Liu F, Dong,L, DeVos JR, Gargiullo PM, Brammer TL, Cox NJ, Tumpey TM, Katz JM (2009) Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N Engl J Med 361:1945–1952PubMedCrossRefGoogle Scholar
  11. 11.
    Influenza Monatsbericht des RKI 20.-23.KW (2010)Google Scholar
  12. 12.
    Kaufmann SHE (2010) The New Plaques: Pandemics and Poverty in a Globalized WorldGoogle Scholar
  13. 13.
    Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–679PubMedCrossRefGoogle Scholar
  14. 14.
    Ma Y, Feng Y, Liu D, Gao GF (2009) Avian influenza virus, Streptococcus suis serotype 2, severe acute respiratory syndrome-coronavirus and beyond: molecular epidemiology, ecology and the situation in China. Philos Trans R Soc Lond B Biol Sci 364:2725–2737PubMedCrossRefGoogle Scholar
  15. 15.
    Neumann G, Noda T, Kawaoka Y (2009) Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459:931–939PubMedCrossRefGoogle Scholar
  16. 16.
    Smith GJ, Fan XH, Wang J, Li KS, Qin K, Zhang JX, Vijaykrishna D, Cheung CL, Huang K, Rayner JM, Peiris JS, Chen H, Webster RG, Guan Y (2006) Emergence and predominance of an H5N1 influenza variant in China. Proc Natl Acad Sci USA 103:16936–16941PubMedCrossRefGoogle Scholar
  17. 17.
    Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, Perdue M, Swayne D, Bender C, Huang J, Hemphill M, Rowe T, Shaw M, Xu X, Fukuda K, Cox N (1998) Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279:393–396PubMedCrossRefGoogle Scholar
  18. 18.
    World Health Organization (2009) Pandemic Influenza Preparedness and Response PlanGoogle Scholar

Schlüsselliteratur

  1. 1.
    Chua KB, Goh KJ, Wong KT et al (1999) Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354:1257–1259PubMedCrossRefGoogle Scholar
  2. 2.
    Eaton BT, Broder CC, Middleton D, Wang LF (2006) Hendra and Nipah viruses: different and dangerous. Nat Rev Microbiol 4:23–35PubMedCrossRefGoogle Scholar
  3. 3.
    Lo MK and Rota PA (2008) The emergence of Nipah Virus, a highly pathogenic paramyxovirus. Journal of Clinical Virology 43:396–400PubMedCrossRefGoogle Scholar

Schlüsselliteratur

  1. 1.
    Conville PS, Witebsky FG (2005) Nocardia and other aerobic actinomycetes. In: Borriello SP, Murray PR, Funke G (eds) Topley & Wilson’s microbiology & microbial infections. Bacteriology, 10th edn. Hodder Arnold, London, pp 1137–1180Google Scholar
  2. 2.
    Conville PS, Witebsky FG (2007) Nocardia, Rhodococcus, Gordonia, Actinomadura, Streptomyces, and other aerobic actinomycetes. In: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA (eds) Manual of clinical microbiology, 9th edn. American Society for Microbiology, Washington, DC pp 515–542Google Scholar
  3. 3.
    Schaal KP (2001) Die Aktinomyzeten. In: Köhler W, Eggers HJ, Fleischer B, Marre R, Pfister H, Pulverer G. (Hrsg) Medizinische Mikrobiologie, 8. Aufl. Urban & Fischer, München, pp 434–452Google Scholar
  4. 4.
    Sorrell TC, Iredell JR, Mitchell DH (2005) Nocardia species. In: Mandell GL, Bennett JE, Dolin R (eds) Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 6th edn. Elsevier Churchill Livingstone, Philadelphia, pp 2916–2924Google Scholar
  5. 5.
    Yassin AF (2009) Nocardia, Rhodococcus, Tsukamurella, Streptomyces und verwandte Arten. In: Neumeister B, Geiss HK, Braun RW, Kimmig P. Mikrobiologische Diagnostik, 2. Aufl. Georg Thieme-Verlag, Stuttgart, pp 370–380Google Scholar

Schlüsselliteratur

  1. 1.
    Ando T Noel JS, Fankhauser RL (2000) Genetic Classification of „Norwalk-like Viruses“. The Journal of Infectious Diseases 181:336–348CrossRefGoogle Scholar
  2. 2.
    Glass RI, Noel J, Ando T, Fankhauser R, Belliot G, Mounts A, Parashar UD, Breese JS, Monroe SS (2000) The Epidemiology of Enteric Caliciviruses from Humans: A Reassessment Using New Diagnostics. The Journal of Infectious Diseases 181:254–261CrossRefGoogle Scholar
  3. 3.
    Kapikian et al. (2001) Norwalk Group of Viruses. In: Fields BN, Knipe DM, Howley PM et al. (eds) Fields Virology, 4th edn. Lippincott-Raven Publishers, Philadelphia, pp 783–810Google Scholar
  4. 4.
    Schneider T, Mankertz J, Jansen A., Schreier E und Zeitz M (2005) Norovirusinfektionen – häufigste Ursache akuter Gastroenteritiden in den Wintermonaten. Deutsches Ärzteblatt 102: A2551–2556Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sebastian Grund
    • 1
  • Hartmut Hengel
    • 1
  1. 1.Institut für VirologieUniversitätsklinikum der Heinrich-Heine-UniversitätDüsseldorf

Personalised recommendations