Modeling Spatial and Spatio-Temporal Non Gaussian Processes

  • Denis Allard
Conference paper
Part of the Lecture Notes in Statistics book series (LNS, volume 207)


The ubiquitous assumption of normality for modeling spatial and spatio-temporal data can be understood for many reasons. A major one is that the multivariate normal distribution is completely characterized by its first two moments. In addition, the stability of multivariate normal distribution under summation and conditioning offers tractability and simplicity. Gaussian spatial processes are well modeled and understood by the statistical and scientific communities, but for a wide range of environmental applications Gaussian spatial or spatio-temporal models cannot reasonably be fitted to the observations.


Covariance Function Gaussian Process Multivariate Normal Distribution Gaussian Vector Gaussian Random Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author wishes to acknowledge Frédéric Baret, Sébastien Garrigues and Philippe Naveau, co-authors of some of the papers cited here. The research presented in Sect. 7.2.2 was funded by the ANR CLIMATOR project.


  1. 1.
    Adler, R.: The Geometry of Random Fields. Wiley, New York (1981)zbMATHGoogle Scholar
  2. 2.
    Adler, R., Taylor, J.: Random Fields and Geometry. Springer, Boston (2007)zbMATHGoogle Scholar
  3. 3.
    Allard D., Naveau, P.: A new spatial skew-normal random field model. Commun. Stat. A-Theor. 36, 1821–1834 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Allcroft, D., Glasbey, C.: A Latent Gaussian Markov Random-Field Model for Spatiotemporal Rainfall Disaggregation. J. Roy. Stat. Soc. C 55, 1952–2005 (2003)Google Scholar
  5. 5.
    Azzalini A., Dalla-Valle, A.: The multivariate skew-normal distribution. Biometrika 83, 715–726 (1996)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Azzalini, A.: The skew-normal distribution and related multivariate families. Scand. J. Stat. 32, 159–188 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Billingsley, P.: Probability and Measure, 2nd edn. John Wiley & Sons, New York (1986)zbMATHGoogle Scholar
  8. 8.
    Bochner, S.: Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse. Math. Ann. 108, 378–410 (1933)MathSciNetGoogle Scholar
  9. 9.
    Brisson, N., Levrault, F. (Eds.): Changement climatique, agriculture et forêt en France: simulations d’impacts sur les principales espèces. Le Livre Vert du projet CLIMATOR (2007–2010). ADEME, Orléans (2010)Google Scholar
  10. 10.
    Chilès, J.P. and Delfiner, P.: Geostatistics: modeling spatial uncertainty. John Wiley & Sons, New York (1999)Google Scholar
  11. 11.
    Cressie, N.A.C.: Statistics for Spatial Data. John Wiley & Sons, New York (1993)Google Scholar
  12. 12.
    De Oliveira, V., Kedem, B., Short, D.A.: Bayesian prediction of transformed gaussian random fields. J. Am. Stat. Assoc. 92, 1422–1433 (1997)zbMATHGoogle Scholar
  13. 13.
    Emery, X.: On the Existence of Mosaic and Indicator Random Fields with Spherical, Circular and Triangular Variograms. Math. Geosci. 42, 969–984 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Garrigues, S., Allard, D., Baret, F.: Using first and second order variograms for characterizing landscape spatial structures from remote sensing imagery. IEEE T. Geosci. Remote. 45, 1823–1834 (2007)CrossRefGoogle Scholar
  15. 15.
    Genton, M.: (Ed.) Skew-Elliptical Distributions and Their Applications. A Journey Beyond Normality. Chapman & Hall/CRC, Boca-Raton (2004)Google Scholar
  16. 16.
    Gupta, A., González-Farías, G., Domínguez-Molina, J.: A multivariate skew-normal distribution. J. Multivariate Anal. 89, 181-190 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Karimi, O., Mohammadzadeh, M.: Bayesian spatial regression models with closed skew normal correlated errors and missing observations. Stat. Pap. DOI 10.1007/s00362-010-0329-2 (2010)Google Scholar
  18. 18.
    Kim, H.M., Mallick, B.K.: A Bayesian prediction using the skew Gaussian distribution. J. Stat. Plan. Infer. 120, 85–101 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Lantuéjoul, C.: Geostatistical Simulations. Springer, Berlin (2002)Google Scholar
  20. 20.
    Matheron, G.: Effet proportionnel et lognormalité ou le retour du serpent de mer. Technical Report N-374, Centre de Géostatistique, Fontainebleau, France (1974)Google Scholar
  21. 21.
    Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)zbMATHGoogle Scholar
  22. 22.
    Matheron, G.: Suffit-il, pour une covariance, d’être de type positif ? Sciences de la Terre, Série Informatique Géologique, 26, 51–66 (1987)Google Scholar
  23. 23.
    Matheron, G.: Une conjecture sur la covariance d’un ensemble aléatoire. Cahiers de Géostatistique, Fasc. 3, 107–113. Ecole des Mines de Paris (1993)Google Scholar
  24. 24.
    Møller, J., Syversveen, A., Waagepetersen, R.: Log Gaussian Cox Processes. Scand. J. Stat. 25, 451-482 (1998)CrossRefGoogle Scholar
  25. 25.
    Myllymäki, M. and Penttinen, A.: Bayesian inference for Gaussian excursion set generated Cox processes with set marking. Stat. Comput., 20, 305–315 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Naveau, P. Allard, D.: Modeling skewness in spatial data analysis without data transformation. In: Leuangthong, O., Deutsch, C., (Eds.) Proceedings of the Seventh International Geostatistics Congress, 929–938. Springer, Dordrecht (2004)Google Scholar
  27. 27.
    Porcu, E., Mateu, J., Christakos, G.: Quasi-arithmetic means of covariance functions with potential applications to space-time data. J. Multivariate Anal. 100, 1830–1844 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Schlather, M.: Some covariance models based on normal scale mixtures. Bernoulli 16, 780–797 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Schoenberg, I.J.: Metric spaces and completely montonic functions. Ann. Math. 39, 811–841 (1938)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Stein, M.: Interpolation of Spatial Data: Some Theory for Kriging, New-York, Springer (1999)zbMATHCrossRefGoogle Scholar
  31. 31.
    Tallis, G.M.: The moment generating function of the truncated multi-normal Distribution. J. Roy. Stat. Soc. B 23, 223–229 (1961)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Wackernagel, H.: Multivariate Geostatistics. An Introduction with Applications. 3rd Ed. Springer, Heidelberg (2003)Google Scholar
  33. 33.
    Wolpert, R. and Ickstadt, K.: Poisson/gamma random field models for spatial statistics, Biometrika, 85, 251–267 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Zimmerman, D.L. and Stein, M.: Classical Geostatistical Methods. In: Gelfand, A.E., Diggle, P.J., Fuentes M., Guttorp, P. (Eds.) Handbook of Spatial Statistics, 29–44. Chapman & Hall/CRC, Boca-Raton (2010)Google Scholar
  35. 35.
    Zimmerman, D.L.: Likelihood-Based Methods. In: Gelfand, A.E., Diggle, P.J., Fuentes M., Guttorp, P. (Eds.) Handbook of Spatial Statistics, 45–56. Chapman & Hall/CRC, Boca-Raton (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Biostatistics and Spatial Processes (BioSP), INRAAvignonFrance

Personalised recommendations