From Key Predistribution to Key Redistribution

  • Jacek Cichoń
  • Zbigniew Gołębiewski
  • Mirosław Kutyłowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6451)

Abstract

One of crucial disadvantages of key predistribution schemes for ad hoc networks is that if devices A and B use a shared key K to determine their session keys, then any adversarial device that holds K can impersonate A against B (or vice versa). Also, the adversary can eavesdrop communication between A and B for the lifetime of the system.

We develop a dynamic scheme where a system provider periodically broadcasts random temporal keys (e.g. via a GSM network) encrypted with keys from the main predistribution pool. Shared temporal keys (and not the keys from the main pool) are used to establish session keys. The trick is that the scheme broadcast is organized in such a way that with a high probability two devices share much more temporal keys than the keys from the main pool of keys. It is a kind of paradox, but this makes it possible not only to protect communication against an adversary that has collected a large fraction of keys from the main pool, but also makes the system well suited for authentication purposes.

Keywords

key predistribution wireless ad hoc network eavesdropping attack detection dynamic key management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. In: Atluri, V. (ed.) ACM Conference on Computer and Communications Security, pp. 41–47. ACM, New York (2002)Google Scholar
  2. 2.
    Çamtepe, S.A., Yener, B.: Combinatorial design of key distribution mechanisms for wireless sensor networks. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS, vol. 3193, pp. 293–308. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Chan, H., Perrig, A., Song, D.X.: Random key predistribution schemes for sensor networks. In: IEEE Symposium on Security and Privacy, p. 197. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  4. 4.
    Anderson, R., Chan, H., Perrig, A.: Key infection: smart trust for smart dust. In: Proceedings of the 12th IEEE International Conference on Network Protocols, ICNP 2004, pp. 206–215 (2004)Google Scholar
  5. 5.
    Blom, R.: An optimal class of symmetric key generation systems. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 335–338. Springer, Heidelberg (1984)CrossRefGoogle Scholar
  6. 6.
    Kulkarni, S., Bezawada, B., Gouda, M.G.: Optimal key distibution for secure communication. University of Texas atAustin MSU-CSE-07-189 (2007), http://www.cse.msu.edu/publications/tech/TR/MSU-CSE-07-189.ps
  7. 7.
    Liu, D., Ning, P., Du, W.: Group-based key pre-distribution in wireless sensor networks. In: WiSe 2005: Proceedings of the 4th ACM Workshop on Wireless Security, pp. 11–20. ACM, New York (2005)Google Scholar
  8. 8.
    Cichoń, J., Grza̧ślewicz, J., Kutyłowski, M.: Key levels and securing key predistribution against node captures. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS, vol. 5804, pp. 64–75. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics, 1st edn. Cambridge University Press, Cambridge (2008)MATHGoogle Scholar
  10. 10.
    Hofri, M.: Analysis of algorithms: computational methods and mathematical tools. Oxford University Press, Oxford (1995)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jacek Cichoń
    • 1
  • Zbigniew Gołębiewski
    • 1
  • Mirosław Kutyłowski
    • 1
  1. 1.Institute of Mathematics and Computer ScienceWrocław University of TechnologyWrocławPoland

Personalised recommendations