Toward Simulating Realistic Pursuit-Evasion Using a Roadmap-Based Approach

  • Samuel Rodriguez
  • Jory Denny
  • Takis Zourntos
  • Nancy M. Amato
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6459)


In this work, we describe an approach for modeling and simulating group behaviors for pursuit-evasion that uses a graph-based representation of the environment and integrates multi-agent simulation with roadmap-based path planning. We demonstrate the utility of this approach for a variety of scenarios including pursuit-evasion on terrains, in multi-level buildings, and in crowds.


Pursuit-Evasion Multi-Agent Simulation Roadmap-based Motion Planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amato, N.M., Bayazit, O.B., Dale, L.K., Jones, C.V., Vallejo, D.: OBPRM: An obstacle-based PRM for 3D workspaces. In: Robotics: The Algorithmic Perspective, Natick, MA, pp. 155–168. A.K. Peters, Wellesley (1998); Proc. Third Workshop on Algorithmic Foundations of Robotics (WAFR), Houston, TX (1998)Google Scholar
  2. 2.
    Bayazit, O.B., Lien, J.-M., Amato, N.M.: Better flocking behaviors using rule-based roadmaps. In: Proc. Int. Workshop on Algorithmic Foundations of Robotics (WAFR), pp. 95–111 (December 2002)Google Scholar
  3. 3.
    Bayazit, O.B., Lien, J.-M., Amato, N.M.: Better group behaviors in complex environments using global roadmaps. Artif. Life, 362–370 (December 2002)Google Scholar
  4. 4.
    Bayazit, O.B., Lien, J.-M., Amato, N.M.: Roadmap-based flocking for complex environments. In: Proc. Pacific Graphics, pp. 104–113 (October 2002)Google Scholar
  5. 5.
    Burgard, W., Moors, M., Fox, D., Simmons, R., Thrun, S.: Collaborative multi-robot exploration. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 476–481 (2000)Google Scholar
  6. 6.
    Durham, J.W., Franchi, A., Bullo, F.: Distributed pursuit-evasion with limited-visibility sensors via frontier-based exploration. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 3562–3568 (2010)Google Scholar
  7. 7.
    Gerkey, B.P., Thrun, S., Gordon, G.: Visibility-based pursuit-evasion with limited field of view. Int. J. Robot. Res. 25(4), 299–315 (2006)CrossRefGoogle Scholar
  8. 8.
    Guibas, L.J., Latombe, J.c., Lavalle, S.M., Lin, D., Motwani, R.: Visibility-based pursuit-evasion in a polygonal environment. International Journal of Computational Geometry and Applications, 17–30 (1997)Google Scholar
  9. 9.
    Isler, V., Kannan, S., Khanna, S.: Randomized pursuit-evasion with limited visibility. In: Proc. ACM-SIAM Symposium on Discrete Algorithms, pp. 1060–1069 (2004)Google Scholar
  10. 10.
    Isler, V., Sun, D., Sastry, S.: Roadmap based pursuit-evasion and collision avoidance. In: Proc. Robotics: Sci. Sys., RSS (2005)Google Scholar
  11. 11.
    Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Automat. 12(4), 566–580 (1996)CrossRefGoogle Scholar
  12. 12.
    Kim, H.J., Vidal, R., Shim, D.H., Shakernia, O., Sastry, S.: A hierarchical approach to probabilistic pursuit-evasion games with unmanned ground and aerial vehicles. In: Proc. IEEE Conf. on Decision and Control, pp. 634–639 (2001)Google Scholar
  13. 13.
    Kolling, A., Carpin, S.: Multi-robot pursuit-evasion without maps. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 3045–3051 (2010)Google Scholar
  14. 14.
    Kolling, A., Kleiner, A., Lewis, M., Sycara, K.: Solving pursuit-evasion problems on height maps. In: IEEE International Conference on Robotics and Automation (ICRA 2010) Workshop: Search and Pursuit/Evasion in the Physical World: Efficiency, Scalability, and Guarantees (2010)Google Scholar
  15. 15.
    Kolling, A., Carpin, S.: Pursuit-evasion on trees by robot teams. Trans. Rob. 26(1), 32–47 (2010)CrossRefGoogle Scholar
  16. 16.
    Lavalle, S.M., Lin, D., Guibas, L.J., Latombe, J.c., Motwani, R.: Finding an unpredictable target in a workspace with obstacles. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 737–742 (1997)Google Scholar
  17. 17.
    Parsons, T.D.: Pursuit-evasion in a graph. In: Theory and Applications of Graphs. Lecture Notes in Mathematics, vol. 642, pages 426–441. Springer, Heidelberg (1978)Google Scholar
  18. 18.
    Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. In: Computer Graphics, pp. 25–34 (1987)Google Scholar
  19. 19.
    Sud, A., Andersen, E., Curtis, S., Ming, L., Manocha, D.: Real-time path planning for virtual agents in dynamic environments. In: Virtual Reality Conference (March 2007)Google Scholar
  20. 20.
    Tovar, B., Murrieta-Cid, R., LaValle, S.M.: Distance-optimal navigation in an unknown environment without sensing distances. IEEE Transactions on Robotics 23(3), 506–518 (2007)CrossRefGoogle Scholar
  21. 21.
    Treuille, A., Cooper, S., Popovi, Z.: Continuum crowds. ACM Trans. Graph. 25(3), 1160–1168 (2006)CrossRefGoogle Scholar
  22. 22.
    van den Berg, J., Patil, S., Sewall, J., Manocha, D., Lin, M.: Interactive navigation of multiple agents in crowded environments. In: Proc. Symposium on Interactive 3D Graphics and Games - I3D 2008 (2008)Google Scholar
  23. 23.
    Wilmarth, S.A., Amato, N.M., Stiller, P.F.: MAPRM: A probabilistic roadmap planner with sampling on the medial axis of the free space. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), vol. 2, pp. 1024–1031 (1999)Google Scholar
  24. 24.
    Yamauchi, B.: Frontier-based exploration using multiple robots. In: International Conference on Autonomous Agents (Agents 1998), pp. 47–53 (1998)Google Scholar
  25. 25.
    Yu, J., LaValle, S.M.: Probabilistic shadow information spaces. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 3543–3549 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Samuel Rodriguez
    • 1
  • Jory Denny
    • 1
  • Takis Zourntos
    • 1
  • Nancy M. Amato
    • 1
  1. 1.Parasol Lab, Dept. Computer Science and EngineeringTexas A&M UniversityUSA

Personalised recommendations