Spatial Awareness in Full-Body Immersive Interactions: Where Do We Stand?

  • Ronan Boulic
  • Damien Maupu
  • Manuel Peinado
  • Daniel Raunhardt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6459)


We are interested in developing real-time applications such as games or virtual prototyping that take advantage of the user full-body input to control a wide range of entities, from a self-similar avatar to any type of animated characters, including virtual humanoids with differing size and proportions. The key issue is, as always in real-time interactions, to identify the key factors that should get computational resources for ensuring the best user interaction efficiency. For this reason we first recall the definition and scope of such essential terms as immersion and presence, while clarifying the confusion existing in the fields of Virtual Reality and Games. This is done in conjunction with a short literature survey relating our interaction efficiency goal to key inspirations and findings from the field of Action Neuroscience. We then briefly describe our full-body real-time postural control with proactive local collision avoidance. The concept of obstacle spherification is introduced both to reduce local minima and to decrease the user cognitive task while interacting in complex environments. Finally we stress the interest of the egocentric environment scaling so that the user egocentric space matches the one of a height-differing controlled avatar.


Spatial awareness immersion presence collision avoidance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    Autodesk MotionBuilder,
  2. [ABD98]
    Amato, N.M., Bayazit, O.B., Dale, L.K.: OBPRM: An Obstacle-Based PRM for 3D Workspaces. In: WAFR 1998 (1998)Google Scholar
  3. [B00]
    Berthoz, A.: The Brain Sense of Movement. Chapter “building coherence”, Section “seeing with the skin”. In: Perspective in Cognitive Neuroscience, pp. 83–86. Harward University Press, Cambridge (2000)Google Scholar
  4. [BMT09]
    Boulic, R., Maupu, D., Thalmann, D.: On Scaling Strategies for the Full Body Interaction with Virtual Mannequins. Interacting with Computers, Special Issue on Enactive Interfaces 21(1-2), 11–25 (2009)CrossRefGoogle Scholar
  5. [BH97]
    Bowman, D., Hodges, L.F.: An Evaluation of Techniques for Grabbing and Manipulating Remote Objects in Immersive Virtual Environments. In: Symp. I3D, pp. 35–38 (1997)Google Scholar
  6. [BM07]
    Bowman, D., McMahan, P.: Virtual Reality: How Much Immersion Is Enough? Computer 40(7), 36–43 (2007)CrossRefGoogle Scholar
  7. [BRWMPB06]
    Burns, E., Razzaque, S., Whitton, M.C., McCallus, M.R., Panter, A.T., Brooks, F.P.: The Hand is More Easily Fooled than the Eye: Users Are More Sensitive to Visual Interpenetration than to Visual-proprioceptive Discrepancy. Presence: Teleoperators and Virtual Environments 15, 1–15 (2006)CrossRefGoogle Scholar
  8. [D01]
    Dourish, P.: Where the action is. MIT Press, Cambridge (2001)Google Scholar
  9. [FH98]
    Flach, J.M., Holden, J.G.: The reality of experience: Gibson’s way. Presence-Teleoperators and Virtual Environments 7(1), 90–95 (1998)CrossRefGoogle Scholar
  10. [FT87]
    Faverjon, B., Tournassoud, P.: A Local Based Approach for Path Planning of Manipulators with a High Number of Degrees of Freedom. In: IEEE Int’l Conf. Robotics and Automation, pp. 1152–1159. IEEE Press, New York (1987)Google Scholar
  11. [GMMG08]
    García, A.S., Molina, J.P., Martínez, D., González, P.: Enhancing collaborative manipulation through the use of feedback and awareness in CVEs. In: 7th ACM SIGGRAPH Int. Conf. VRCAI 2008. ACM, New York (2008)Google Scholar
  12. [H27]
    Heidegger, M.: Being and Time, John Macquarrie and Edward Robinson, translated in English in 1962. Harper and Row, New York (1962)Google Scholar
  13. [J97]
    Jeannerod, M.: The cognitive neuroscience of action. Blackwell, Malden (1997)Google Scholar
  14. [J09]
    Jeannerod, M.: Le cerveau volontaire. Odile Jacob Sciences (2009)Google Scholar
  15. [J73]
    Johansson, G.: Visual perception of biological motion and a model for its analysis. Perception and Psychophysics 14, 201–211 (1973)CrossRefGoogle Scholar
  16. [MBRT99]
    Molet, T., Boulic, R., Rezzonico, S., Thalmann, D.: An architecture for immersive evaluation of complex human tasks. IEEE TRA 15(3) (1999)Google Scholar
  17. [MS99]
    Murray, C.D., Sixsmith, J.: The Corporeal Body in Virtual Reality. Ethos 27(3), 315–343 (1999)CrossRefGoogle Scholar
  18. [NvDR08]
    Nijholt, A., van Dijk, B., Reidsma, D.: Design of Experience and Flow in Movement-Based Interaction. In: Egges, A., Kamphuis, A., Overmars, M. (eds.) MIG 2008. LNCS, vol. 5277, pp. 166–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. [PMMRTB09]
    Peinado, M., Meziat, D., Maupu, D., Raunhardt, D., Thalmann, D., Boulic, R.: Full-body Avatar Control with Environment Awareness. IEEE CGA 29(3) (May-June 2009)Google Scholar
  20. [PBRM07]
    Peinado, M., Boulic, R., Raunhardt, D., Meziat, D.: Collision-free Reaching in Dynamic Cluttered Environments, VRLAB Technical Report (2007)Google Scholar
  21. [PMLGKD08]
    Pronost, N., Multon, F., Li, Q., Geng, W., Kulpa, R., Dumont, G.: Interactive animation of virtual characters: application to virtual kung-fu fighting. In: International Conference on Cyberworlds 2008, Hangzhou – China (2008)Google Scholar
  22. [PMLGKD09]
    Pronost, N., Multon, F., Li, Q., Geng, W., Kulpa, R., Dumont, G.: Morphology independent motion retrieval and control. The International Journal of Virtual Reality 8(4), 57–65 (2009)Google Scholar
  23. [ON01]
    O’Regan, J.K., Noë, A.: A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences 24(5), 939–1011 (2001)CrossRefGoogle Scholar
  24. [PJ00]
    Paccalin, C., Jeannerod, M.: Changes in breathing during observation of effortfull actions. Brain Research 862, 194–200 (2000)CrossRefGoogle Scholar
  25. [R03]
    Reteaux, X.: Presence in the environment: theories, methodologies and applications to video games. PsychNology Journal 1(3), 283–309 (2003)Google Scholar
  26. [R06]
    Reteaux, X.: Immersion, Presence et Jeux Video. In: Geno, S. (ed.) Le Game Design de Jeux Video, Approches de l’Expression Videoludique, L’Harmattan, Paris (2006)Google Scholar
  27. [RSSS09]
    Rovira, A., Swapp, D., Spanlang, B., Slater, M.: The Use of Virtual Reality in the Study of People’s Responses to Violent Incidents. Front Behav. Neurosci. 3, 12 (2009)Google Scholar
  28. [S03]
    Slater, M.: A note on presence terminology. Presence Connect 3, 3 (2003)Google Scholar
  29. [S04]
    Steel, L.: The autotelic principle. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.) Embodied Artificial Intelligence. LNCS (LNAI), vol. 3139, pp. 231–242. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. [SS05]
    Sanchez-Vives, M.V., Slater, M.: From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6(4), 332–339 (2005)CrossRefGoogle Scholar
  31. [SSC10]
    Slater, M., Spanlang, B., Corominas, D.: Simulating virtual environments within virtual environments as the basis for a psychophysics of presence. In: Hoppe, H. (ed.) ACM SIGGRAPH 2010 Papers, SIGGRAPH 2010, Los Angeles, California, July 26 - 30. ACM, New York (2010)Google Scholar
  32. [TGB00]
    Tolani, D., Goswami, A., Badler, N.I.: Real-Time Inverse Kinematics Techniques for Anthropomorphic Limbs. Graphical Models 62(5), 353–388 (2000)CrossRefzbMATHGoogle Scholar
  33. [UPBS08]
    Unzueta, L., Peinado, M., Boulic, R., Suescun, A.: Full-Body Performance Animation with Sequential Inverse Kinematics. Graphical Models 70(5), 87–104 (2008)CrossRefGoogle Scholar
  34. [ZJ98]
    Zahorik, P., Jenison, R.L.: Presence as being-in-the world. Presence-Teleoper. Virtual Environ. 7, 78–89 (1998)CrossRefGoogle Scholar
  35. [ZB94]
    Zhao, X., Badler, N.: Interactive Body Awareness. Computer Aided Design 26(12), 861–866 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ronan Boulic
    • 1
  • Damien Maupu
    • 1
  • Manuel Peinado
    • 2
  • Daniel Raunhardt
    • 3
  1. 1.VRLABEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Departamento de AutomáticaUniversidad de AlcaláSpain
  3. 3.BBV Software Service AGZugSwitzerland

Personalised recommendations