Full-Body Hybrid Motor Control for Reaching

  • Wenjia Huang
  • Mubbasir Kapadia
  • Demetri Terzopoulos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6459)


In this paper, we present a full-body motor control mechanism that generates coordinated and diverse motion during a reaching action. Our framework animates the full human body (stretching arms, flexing of the spine, as well as stepping forward) to facilitate the desired end effector behavior. We propose a hierarchical control system for controlling the arms, spine, and legs of the articulated character and present a controller-scheduling algorithm for coordinating the sub-controllers. High-level parameters can be used to produce variation in the movements for specific reaching tasks. We demonstrate a wide set of behaviors such as stepping and squatting to reach low distant targets, twisting and swinging up to reach high lateral targets, and we show variation in the synthesized motions.


Inverse Kinematic Twist Angle Spine Motion Step Motion Virtual Human 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Faraway, J., Reed, M., Wang, J.: Modeling 3D trajectories using Bezier curves with application to hand motion. Applied Statistics 56, 571–585 (2007)Google Scholar
  2. 2.
    Gray, H.: Anatomy, Descriptive and Surgical. Gramercy, New York (1977)Google Scholar
  3. 3.
    Inoue, K., Yoshida, H., Arai, T., Mae, Y.: Mobile manipulation of humanoids: Real-time control based on manipulability and stability. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2217–2222 (2000)Google Scholar
  4. 4.
    Kallmann, M.: Scalable solutions for interactive virtual humans that can manipulate objects. In: Proc. 1st Conf. on Artificial Intelligence and Interactive Digital Entertainment, pp. 69–75 (2005)Google Scholar
  5. 5.
    Kallmann, M.: Analytical inverse kinematics with body posture control. Computer Animation and Virtual Worlds 19(2), 79–91 (2008)CrossRefGoogle Scholar
  6. 6.
    Kallmann, M.: Autonomous object manipulation for virtual humans. In: SIGGRAPH 2008: ACM SIGGRAPH 2008 Courses, pp. 1–97. ACM, New York (2008)Google Scholar
  7. 7.
    Kallmann, M., Aubel, A., Abaci, T., Thalmann, D.: Planning collision-free reaching motions for interactive object manipulation and grasping. Computer Graphics Forum (Proc. Eurographics 2003) 22(3), 313–322 (2003)CrossRefGoogle Scholar
  8. 8.
    Kallmann, M., Marsella, S.: Hierarchical motion controllers for real-time autonomous virtual humans. In: Panayiotopoulos, T., Gratch, J., Aylett, R.S., Ballin, D., Olivier, P., Rist, T. (eds.) IVA 2005. LNCS (LNAI), vol. 3661, pp. 243–265. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: SIGGRAPH 2008: ACM SIGGRAPH 2008 Courses, pp. 1–10. ACM, New York (2008)Google Scholar
  10. 10.
    Kuffner Jr., J., Latombe, J.C.: Interactive manipulation planning for animated characters. In: Proc. Pacific Graphics, p. 417 (2000)Google Scholar
  11. 11.
    Kulpa, R., Multon, F.: Fast inverse kinematics and kinetics solver for human-like figures. In: 5th IEEE-RAS Int. Conf. on Humanoid Robots, pp. 38–43 (December 2005)Google Scholar
  12. 12.
    Kulpa, R., Multon, F., Arnaldi, B.: Morphology-independent representation of motions for interactive human-like animation. CG Forum 24, 343–352 (2005)Google Scholar
  13. 13.
    Lee, S.H., Sifakis, E., Terzopoulos, D.: Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. on Graphics 28(4), 99, 1–17 (2009)CrossRefGoogle Scholar
  14. 14.
    Lee, S.H., Terzopoulos, D.: Heads up! Biomechanical modeling and neuromuscular control of the neck. ACM Transactions on Graphics 25(3), 1188–1198 (2006)CrossRefGoogle Scholar
  15. 15.
    Liu, Y.: Interactive reach planning for animated characters using hardware acceleration. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA (2003)Google Scholar
  16. 16.
    Monheit, G., Badler, N.I.: A kinematic model of the human spine and torso. IEEE Computer Graphics and Applications 11(2), 29–38 (1991)CrossRefGoogle Scholar
  17. 17.
    Murray, R.M., Sastry, S.S., Zexiang, L.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Inc., Boca Raton (1994)zbMATHGoogle Scholar
  18. 18.
  19. 19.
    Shapiro, A., Kallmann, M., Faloutsos, P.: Interactive motion correction and object manipulation. In: Proc. Symp. on Int. 3D Graphics and Games, pp. 137–144 (2007)Google Scholar
  20. 20.
    Tolani, D., Goswami, A., Badler, N.I.: Real-time inverse kinematics techniques for anthropomorphic limbs. Graphical Models and Im. Proces. 62(5), 353–388 (2000)CrossRefzbMATHGoogle Scholar
  21. 21.
    Williams, R.: The Animator’s Survival Kit. Faber, London (2001)Google Scholar
  22. 22.
    Yamane, K., Kuffner, J.J., Hodgins, J.K.: Synthesizing animations of human manipulation tasks. ACM Transactions on Graphics 23(3), 532–539 (2004)CrossRefGoogle Scholar
  23. 23.
    Yoshida, E., Kanoun, O., Esteves, C., Laumond, J.P.: Task-driven support polygon humanoids. In: 6th IEEE-RAS Int. Conf. on Humanoid Robots (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Wenjia Huang
    • 1
  • Mubbasir Kapadia
    • 1
  • Demetri Terzopoulos
    • 1
  1. 1.University of CaliforniaLos AngelesUSA

Personalised recommendations