Subgraphs Generating Algorithm for Obtaining Set of Node-Disjoint Paths in Terrain-Based Mesh Graphs

  • Zbigniew Tarapata
  • Stefan Wroclawski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6459)


In the article an algorithm (SGDP) for solving node-disjoint shortest K paths problem in mesh graphs is presented. The mesh graph can represent e.g. a discrete terrain model in a battlefield simulation. Arcs in the graph geographically link adjacent nodes only. The algorithm is based on an iterative subgraph generating procedure inside the mesh graph (for finding a single path from among K paths single subgraph is generated iteratively) and the usage of different strategies to find (and improve) the solution. Some experimental results with a discussion of the complexity and accuracy of the algorithm are shown in detail.


Node-disjoint paths battlefield simulation games mesh graph subgraphs generating terrain-based graph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, A., Kleinberg, J., Williamson, D.: Node-Disjoint Paths on the Mesh and a New Trade-Off in VLSI Layout. SIAM Journal on Computing 29(4), 1321–1333 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Andersen, R., Chung, F., Sen, A., Xue, G.: On Disjoint Path Pairs with Wavelength Continuity Constraint in WDM Networks. In: Proceedings of the IEEE INFOCOM 2004, Hong Kong (China), March 7-11, pp. 524–535 (2004)Google Scholar
  3. 3.
    Eppstein, D.: Finding common ancestors and disjoint paths in DAGs, Technical Report 95-52, Department of Information and Comp. Science, Univ. of California, Irvine (1995)Google Scholar
  4. 4.
    Eppstein, D.: Finding the K shortest Paths. SIAM J. Computing 28(2), 652–673 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Even, S., Itai, A., Shamir, A.: On the complexity of time-table and multicommodity flow problems. SIAM Journal on Computing 5, 691–703 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ibaraki, T.: Algorithms for obtaining shortest paths visiting specified nodes. SIAM Review 15(2), Part 1, 309–317 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Jongh, A., Gendreau, M., Labbe, M.: Finding disjoint routes in telecommunications networks with two technologies. Operations Research 47, 81–92 (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Li, C.L., McCormick, S.T., Simchi-Levi, D.: The complexity of finding two disjoint paths with min-max objective function. Discrete Applied Math. 26, 105–115 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Li, C.L., McCormick, S.T., Simchi-Levi, D.: Findind disjoint paths with different path-costs: Complexity and algorithms. Networks 22, 653–667 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Perl, Y., Shiloach, Y.: Finding two disjoint paths between two pairs of vertices in a graph. Journal of the ACM 25, 1–9 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Petty, M.D.: Computer generated forces in Distributed Interactive Simulation. In: Proceedings of the Conference on Distributed Interactive Simulation Systems for Simulation and Training in the Aerospace Environment, The International Society for Optical Engineering, Orlando, pp. 251–280 (1995)Google Scholar
  12. 12.
    Sherali, H., Ozbay, K., Subramanian, S.: The time-dependent shortest pair of disjoint paths problem: complexity, models and algorithms. Networks 31, 259–272 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Schrijver, A., Seymour, P.: Disjoint paths in a planar graph – a general theorem. SIAM Journal of Discrete Mathematics 5(1), 112–116 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Suurballe, J. W.: Disjoint paths in a network. Networks 4, 125–145 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Suurballe, J.W., Tarjan, R.E.: A quick method for finding shortest pairs of disjoint paths. Networks 14, 325–336 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tarapata, Z.: Multi-paths optimization in unreliable time-dependent networks. In: Proceedings of the 2nd NATO Regional Conference on Military Communication and Information Systems, Zegrze (Poland), October 04-06, vol. I, pp. 181–189 (2000)Google Scholar
  17. 17.
    Tarapata, Z.: Approximation Scheduling Algorithms for Solving Multi-objects Movement Synchronization Problem. In: ICANNGA 2009. LNCS, vol. 5495, pp. 577–589. Springer, Heidelberg (2009)Google Scholar
  18. 18.
    Tarapata, Z.: Multiresolution models and algorithms of movement planning and their application for multiresolution battlefield simulation. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010. LNCS, vol. 5991, pp. 378–389. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Tarapata, Z.: Movement Simulation and Management of Cooperating Objects in CGF Systems: a Case Study. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-AMSTA 2010. LNCS, vol. 6070, pp. 293–304. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Tuft, D., Gayle, R., Salomon, B., Govindaraju, N., Lin, M., Manocha, D.: Accelerating Route Planning And Collision Detection for Computer Generated Forces Using GPUS. In: Proc. of Army Science Conference, Orlando (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zbigniew Tarapata
    • 1
  • Stefan Wroclawski
    • 1
  1. 1.Cybernetics FacultyMilitary University of TechnologyWarsawPoland

Personalised recommendations